Deutsch

Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

193
2023-09-13 14:15:46
Übersetzung anzeigen

Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.

Figure 1: TruTops Print allows users to print parts with cantilever angles as low as 15 degrees without the need for a support structure

"The latest version of Trumpf's TruTops Print software virtually eliminates the need for support materials, which means faster build times and lower material consumption." According to Lukas Gebhard, additive manufacturing process development engineer from toolcraft, "Unsupported printing brings parts close to their final shape, opening the door to parts and projects that were not possible before, such as near-net form fabrication of large diameter internal cooling channels."

Previously, users had to print the support structure along with the part to secure the part to the build platform, while also being used to cool the part to prevent internal tension and deformation during printing. Today, Trumpf's innovative technology means that many 3D printing applications can be carried out unsupported, even when working with difficult-to-process materials such as stainless steel.

Figure 2: Unbraced 3D printing technology is particularly suitable for parts with large cavities or challenging cantilevers

Software opens new 3D printing strategy

Timo Degen, Product Manager for Additive Manufacturing at TRUMPF, said: "When 3D printing a part, we want to be able to precisely control when and where the material melts and resolidifies. The key is to choose the right exposure strategy to prevent internal tension and overheating in the cantilever area." TruTops Print enables the 3D printer to use the best printing strategy for each different area of the part, eliminating the need for support structures. At the same time, the improved wind field of TrumPF's new 3D printer meets the requirements of uniform processing conditions and unsupported printing.

Figure 3: TruTops Print enables the 3D printer to use the optimal printing strategy for each different area of the part, eliminating the need for support structures

Unsupported 3D printing technology opens up new applications

Timo Degen, product manager for Additive Manufacturing at TRUMPF, notes that the propping-free printing technology is particularly suitable for challenging situations with large cavities or cantilever components, such as parts such as water tanks, heat exchangers, hydraulic blocks and molds. This new technology also opens up applications that were previously not fully utilized, including additively manufactured radial compressors and shroud impels. In the past, because of the impeller's cantilever Angle, manufacturers were unable to print impellers that did not require support. "The demand for support meant that 3D printing could not economically replace traditional manufacturing, but that has now changed," Degen said.

About TRUMpf

Trumpf is a high-tech company that provides manufacturing solutions in the field of machine tools and laser technology. The company drives digital connectivity in manufacturing through consulting, platform products and software, and TRUMPF is a technology and market leader in flexible sheet metal processing machines and industrial lasers.

In 2022/23, the company employed around 17,900 people and generated sales of 5.4 billion euros (preliminary figures). The TrumPF Group has more than 90 companies and is present in almost all European countries as well as in North America, South America and Asia. The company has production sites in Germany, France, the United Kingdom, Italy, Austria, Switzerland, Poland, the Czech Republic, the United States, Mexico and China.

Source: TRUMPF

Ähnliche Empfehlungen
  • Micro laser opens the door to chip size sensors

    The new device is a frequency comb - a special type of laser that can generate multiple wavelengths of light, each with a fixed frequency interval. On the spectrogram, it looks a bit like the teeth of a comb. In approximately a quarter century since their first development, these "cursor rulers" have completely transformed various high-precision measurements from timing to molecular detection. In ...

    2024-03-13
    Übersetzung anzeigen
  • Researchers have made breakthrough discoveries in the field of nanophotonics

    Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.A mode-locked laser is a type of lase...

    2023-11-20
    Übersetzung anzeigen
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    Übersetzung anzeigen
  • The team led by Gao Chunqing and Fu Shiyao from Beijing University of Technology has made significant breakthroughs in the study of photon angular momentum regulation

    Recently, a team led by Gao Chunqing and Fu Shiyao from the School of Optoelectronics at Beijing University of Technology combined optical spatial coordinate transformation with photon spin Hall effect to construct a photon angular momentum filter for the first time internationally, achieving on-demand regulation of photon spin angular momentum and orbital angular momentum.The related achievements...

    2023-10-20
    Übersetzung anzeigen
  • Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

    Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated w...

    2024-04-09
    Übersetzung anzeigen