繁体中文

New LiDAR can 'see' faces from hundreds of meters away

1124
2025-02-11 15:58:55
查看翻譯

At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and create a 3D model of the face. This LiDAR can even capture ridges and indentations as small as 1 millimeter.

 



The relevant paper was published in the latest issue of the journal Optics. The team has designed a single photon time-of-flight lidar system. The system emits laser pulses, which reflect back to the device after colliding with objects. Lidar can determine the shape of an object by measuring the time required for each pulse to travel back and forth. The system is capable of obtaining high-resolution 3D images of objects or scenes up to a distance of 1 kilometer. Even in harsh environments or when objects are obscured by leaves or camouflage nets, it can achieve precise imaging, greatly improving security monitoring and remote sensing capabilities.

In order to achieve improved resolution, the team carefully calibrated and adjusted different components, such as the tiny parts inside the device used to guide laser pulses. In order to enable the device to distinguish individual photons, the team used a light detection sensor based on extremely fine superconducting wires, which is not commonly used in LiDAR. In addition, it is necessary to filter out sunlight that may enter the detector and reduce image quality. Tests have shown that the system captured a 3D image of a team member's face under 45 meter and 325 meter daylight conditions, distinguishing features as small as 1 millimeter and increasing depth resolution by approximately 10 times compared to their previous records. On a smaller scale, they captured images of Lego figurines from 32 meters away.

In another test, they filmed a communication tower 1 kilometer away. The excellent depth resolution of this system means that it is particularly suitable for imaging objects in cluttered backgrounds, which is a challenge for digital cameras. The team said that creating a detailed 3D map of the surrounding environment is also crucial for autonomous vehicle and even some robots.

Source: laserfair

相關推薦
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    查看翻譯
  • MedWorld Advisors acquires stakes in two companies to establish MedTech Laser Group

    Recently, MedWorld Advisors, an internationally renowned healthcare M&A consulting firm, is pleased to announce the establishment of a new medical laser company, MedTech Laser Group, by acquiring shares in two similar companies.The birth of MedTech Laser Group originated from A. in Nuremberg, Germany R. C Laser GmbH and G. from Caesarea, Israel (adjacent to Tel Aviv) N. The successful acquisit...

    2024-08-12
    查看翻譯
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    查看翻譯
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    查看翻譯
  • Ultrafast laser technology continues to reach new heights

    Ultra short pulse lasers, such as femtosecond lasers, are increasingly becoming easy-to-use plug and play devices suitable for a wide range of industrial and biomedical applications. Fifteen years ago, the volume of these lasers was still very large, requiring daily cleaning of optical components, regular maintenance of cooling water, and continuous optimization of laser parameters. Nowada...

    2023-11-06
    查看翻譯