繁体中文

The team of researcher Wei Chaoyang of Shanghai Optical Machinery Institute has realized the manufacture of fused quartz components with high resistance to UV laser damage

924
2023-09-11 14:40:05
查看翻譯

Recently, a team led by researcher Zhaoyang Wei of the Precision Optics Manufacturing and Testing Center of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has realized the manufacture of fused quartz components with high resistance to UV laser damage based on the defect characterization and removal process of CO2 laser. The research is published in Light: Advanced Manufacturing.

The problem of UV laser induced damage of fused quartz elements seriously restricts the development of high power laser systems. Due to the inevitable processing defects in the current contact polishing process, and it is difficult to be completely removed by post-processing, the service performance and life of fused quartz components are greatly reduced.

The research team proposed a laser chromatography ablation method to characterize subsurface defects based on microsecond pulsed laser low stress uniform ablation technology, and coupled it to the rapid material removal process to achieve complete removal of subsurface defects in the grinding stage. After that, the CO2 laser laser full link flexible machining of fused quartz components is realized by using laser conformal cleaning method to clean the redeposited contaminants on the ablative surface, and using laser melting polishing to smooth the ablative trajectory.

Compared with the traditional process, the CO2 laser processing link can effectively inhibit the introduction of machining defects and realize the preparation of fused quartz components with higher damage threshold. The laser-based defect characterization and removal method proposed in this study provides a new tool for the study of subsurface defects and the formulation of suppression strategies, and also provides a new idea for the low-defect machining of fused quartz components.

This work was supported by the National Key Research and Development Program, Shanghai Sailing Program, National Natural Science Youth Foundation, Shanghai Natural Science Foundation, Astronomy Joint Foundation and Youth Innovation Promotion Association of Chinese Academy of Sciences.

Figure 1 (a) Traditional process link; (b)CO2 laser processing link; (c) Three-dimensional full aperture subsurface defect characterization method

FIG. 2 Comparison of damage properties between conventional and laser-based samples: (a)1-on-1 damage probability (355nm, 8.3ns); (b) Typical damage morphology

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

相關推薦
  • Lawrence Livermore National Laboratory develops PW grade thulium laser in the United States

    Recently, according to Tom's Hardware, Lawrence Livermore National Laboratory (LLNL) in the United States is developing a PW (1015 W) level large aperture thulium (BAT) laser. It is reported that this laser has the ability to increase the efficiency of extreme ultraviolet lithography (EUV) light sources by about 10 times, and may potentially replace the carbon dioxide laser used in current EUV too...

    02-13
    查看翻譯
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    查看翻譯
  • The scientific research team of Beijing University of Technology opens up a new field of on-chip optics research

    Zhang Jun, an academician team of Beijing University of Technology, pioneered the on chip spectral multiplexing perception architecture, and independently developed the first 100 channel megapixel hyperspectral real-time imaging device in the world, creating the world's highest light energy utilization rate. On November 7, the team's relevant achievements were published in the journal Nature, and ...

    2024-11-08
    查看翻譯
  • Korean researchers use laser ablation to create deformable micro supercapacitors

    Recently, a research team from the Korea Institute of Industrial Technology and POSTECH University successfully utilized laser sintering pattern technology to create a deformable micro supercapacitor (MSCs), specifically designed to provide energy storage solutions for soft electronic devices. This breakthrough meets the urgent need for efficient energy storage systems in stretchable devices in...

    2024-05-30
    查看翻譯
  • Combined spectral lasers can unlock the potential of laser plasma accelerators

    A team of researchers in Berkeley Lab's Accelerator Technology and Applied Physics (ATAP) division has developed a new technique that combines fiber lasers of different wavelengths to generate ultra-short laser pulses. The research is in the journal Optics Letters.This work could advance the development of laser plasma accelerators (LPA), which have the potential to push the frontiers of high-en...

    2023-08-04
    查看翻譯