繁体中文

Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

391
2024-10-26 11:36:19
查看翻譯

Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".

Figure 1. Demonstration of multi-color diffraction. (a) Diffraction setting. (b) Example image. (c) FT of (b). (d) Obtained through zero padding around (b). (e) FT of (d). (f) Obtain (e) through cropping.

The duration of attosecond light pulses is extremely short (1 attosecond=10-18 seconds), which is a direct and effective means to expand the study of ultrafast dynamics of microscopic matter and reveal underlying physical laws in multiple fields. The attosecond light pulse can achieve ultra-high time resolution, while also possessing characteristics such as short wavelength, high coherence, and high-precision synchronous control. However, the inherent ultra wide spectrum of attosecond light pulses introduces significant chromatic aberration in imaging systems, and the interference between different spectral components and the lack of high-quality optical components in the extreme ultraviolet/soft X-ray band have become bottlenecks restricting the development of attosecond imaging. Our goal is to overcome these technological challenges, achieve ultra-high spatiotemporal resolution imaging based on attosecond light sources, and promote the application of attosecond light sources in fields such as biomedicine, laser precision processing, and semiconductors, "said Wang Hushan, head of the attosecond imaging research team at the attosecond Science and Technology Research Center.

The new method for calculating imaging using lensless ultra wide spectrum proposed by the research team of Xi'an Institute of Optics and Fine Mechanics can extract high-quality clear monochromatic diffraction patterns from blurry ultra wide spectrum diffraction patterns, thereby achieving high-resolution imaging. This method significantly improves the applicable spectral bandwidth of a single coherent diffraction imaging light source, with a spectral bandwidth to center wavelength ratio of up to 140%, which is currently a relatively advanced level internationally, "said Li Boyang, a member of the Amis Imaging Research Team at the Amis Science and Technology Research Center. This study provides a key technological path for attosecond imaging, which is of great significance for the construction of advanced attosecond laser facilities (part of Xi'an) imaging terminals and the significant application expansion of attosecond light sources in China's major scientific and technological infrastructure.

Figure 2. (a) (d) Narrow band coherent diffraction imaging; (b) (e) Direct inversion results of broadband optical diffraction patterns; (c) (f) Broadband coherent diffraction imaging achieved by the monochromatization method proposed by the team

The 2023 Nobel Prize in Physics is awarded to three scientists in recognition of their experimental method of generating attosecond light pulses for studying the electronic dynamics of matter. Fu Yuxi, Deputy Director of Xi'an Institute of Optics and Fine Mechanics, introduced, "Since our establishment, we have had a solid theoretical research foundation in the field of ultrafast light science. In recent years, we have deployed fundamental, forward-looking, and systematic research in the field of ultrafast light science. In 2021, we specifically established the Ames Science and Technology Research Center, closely focusing on the forefront of world science and technology and major national needs, striving to build an international first-class innovative research platform and talent team, and providing key support for seizing the high ground in the field of ultrafast light science.

Source: Opticsky

相關推薦
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    查看翻譯
  • Nikon launches COOLSHOT 20i GIII laser rangefinder with two measurement display modes: golf and actual distance

    Nikon Vision, a subsidiary of Nikon Corporation, is pleased to announce the launch of the COOLSHOT 20i GIII laser rangefinder for golfers, which is Nikon's small and lightweight model in the COOLSHOT series.While maintaining the lightweight and compact size of the COOLSHOT 20i GII, the new model notifies users through brief vibrations that the distance to the flagpole has been measured.When measur...

    2024-03-27
    查看翻譯
  • Outlook - Future of miniaturized lasers

    The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks ...

    2023-12-19
    查看翻譯
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    查看翻譯
  • Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

    As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.Unlocking the precise me...

    2023-09-25
    查看翻譯