繁体中文

Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

465
2024-10-08 14:02:29
查看翻譯

The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solution. Shuoqing Shi and others from the State Key Laboratory of Solidification Processing of Northwestern Polytechnical University found that the limited mechanical properties of aluminum silicon alloys hindered their application under harsh and extreme conditions. The cracking tendency of high-strength aluminum alloys and the high cost of rare earth elements pose challenges to the large-scale application of aluminum alloys in additive manufacturing. The new practical high-speed scanning remelting technology proposed in this study enables Al Si alloys to have a significant proportion of microstructure and nano precipitates, with strength (496.1 ± 5.8 MPa) and plasticity (21.4 ± 0.9%) superior to the mechanical properties of aluminum alloys prepared by conventional methods. This in-situ microstructure control method has opened up new avenues for applications in harsh engineering environments.

Figure 1: Microstructure of LPBF and LPBF-HSR samples. Band contrast (BC), inverse polarization (IPF), and GND distribution of samples (a-a2) (i-i2). (b) (j) PF images of (a1) and (i1) respectively. (c-d) (k-l) Equivalent grain diameter and aspect ratio. SEM images and aspect ratios of (e-f) (m-n) cellular substructures. (g-h) (o-p) SEM images and size distribution of precipitated nanoparticles.

Figure 2: Temperature field and solidification conditions of the molten pool. (a-b) are the longitudinal sections of the melt pool temperature field for LPBF and LPBF-HSR specimens, respectively. Comparative analysis of isothermal melting interface temperature gradient G, growth rate R, and cooling rate T between LPBF and LPBF-HSR samples (c-d). (e) Solidification diagrams of G and R values under LPBF and HSSR conditions.

Figure 3 Uniaxial tensile performance. (a) Representative engineering stress-strain (σ - ε) curves. (b) The mechanical properties of current LPBF-HSR samples are compared with those of LPBF, heat treatment (HT), laser directed energy deposition (LDED), magnetic field (MF) applications, remelting, composite materials, and high-strength aluminum alloys. (c) The comparison chart of real stress (σ t) and work hardening rate (Zeta) with real strain (ε t) is shown in detail in the attached figure. (d) The work hardening index (n) values at different strain stages.

Figure 4 LUR tensile test and fracture analysis. (a) The LUR tensile test results of two samples. (b) The evolution of σ flow, σ back, and σ eff during tensile testing. (c) The proportion of σ eff to total σ at different strain levels (σ eff/σ flow). IPF and TF images near the (d-d ') (g-g') tensile fracture. GNDs and BC images of the blue boxed regions in (e-e '), (h-h'), (d), and (g). (f) (i) SEM images of the blue boxed areas in (e) and (h), respectively. (j-l) Evolution of dislocations near the fracture surface under different strains.

In summary, HSSR technology is considered a breakthrough and practical method for in-situ modification of the microstructure and mechanical properties of LPBF alloys, with great potential for application. Increasing the proportion of equiaxed refined grains can significantly alleviate strain localization at MPBs in the sample, thereby delaying debonding and improving the ductility of the sample. Refining the crystal cell structure, increasing grain boundary density, and precipitating nanoparticles can effectively improve work hardening ability and ultimately enhance tensile strength. The influence of HSSR treated Al Si alloy on anisotropy, fracture toughness, and fatigue performance is a highly concerned issue in the aerospace field and deserves further exploration.

The relevant research results were published in Materials Research Letters (Volume 12, 2024 Issue 9) under the title "Achieving superior strength ductility performance in laser powder bed fusion of AlSi10Mg via high-speed scanning refining". The first author of the paper is Shuoqing Shi, and the corresponding author is Yufan Zhao.

Source: Yangtze River Delta Laser Alliance

相關推薦
  • Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

    Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds,...

    2023-10-12
    查看翻譯
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    查看翻譯
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    查看翻譯
  • Laser cleaning equipment manufacturer LPC receives multiple orders

    Recently, laser cleaning equipment manufacturer Laser Photonics Corporation (LPC) has disclosed multiple orders in a row.On December 26th, LPC received an order from Walsh Service Solutions to purchase a handheld laser cleaning equipment. It is understood that the manufacturer is purchasing CleanTech IR-3040, a high-performance handheld fiber laser cleaning device designed by LPC, mainly used for ...

    2024-12-31
    查看翻譯
  • Three core processes of laser soldering support the development of PCB electronics industry

    In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its ma...

    2024-04-15
    查看翻譯