繁体中文

A new type of all-optical intelligent spectrometer

698
2024-07-22 11:54:26
查看翻譯

Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoherent light sources, with significant advantages of low energy consumption and light speed processing. The relevant achievements have been published under the title "Opto intelligence Spectrometer Using Diffractive Neural Networks" in the top international optical journal "Nanophotonics" (China University of Science and Technology, Class 1, Top Journal).

Nanophotonics, published by Walter de Gruyter in Germany, focuses on exploring cutting-edge advances in the interaction between light and matter, as well as their fundamental principles and applications. The first authors of this paper are Wang Ze, a master's student at Beijing Institute of Technology, and Chen Hang, a postdoctoral fellow at Tsinghua University. The corresponding authors are Associate Researcher Li Jianan, Professor Xu Tingfa, and Assistant Professor Lin Xing.

The newly developed all optical intelligent spectrometer (OIS) converts the spectral amplitude of the input light source into the detection intensity on the output plane, and uses multiple detectors to accurately perceive the intensity of different spectral bands. By establishing a mapping relationship between input and output and optimizing the phase distribution of the modulation layer using two mean square error (MSE) loss functions, high contrast output intensity distribution and accurate reconstruction of the input light source spectrum were achieved. The principle is shown in Figure 1.

Figure 1. Architecture of all-optical intelligent spectrometer based on diffractive neural network.

The experimental results show that OIS exhibits excellent spectral reconstruction capability under both spatially coherent and spatially incoherent light sources (see Figure 2). In addition, the application testing of the device on the real-world dataset CAVE shows that it has good generalization ability and practical application potential (see Figure 3).

Figure 2. OIS spectral reconstruction results with a spectral resolution of 10nm. Left image: Randomly generated spectral amplitude distribution and spectral reconstruction results. Right figure: Intensity distribution of the output plane.

Figure 3. Spectral reconstruction results of OIS on the real-world dataset CAVE, with a spectral resolution of 10nm.
This study has overcome the long-standing challenges of traditional spectral reconstruction architectures, such as bulky optical components, complex electronic reconstruction algorithms, and limited flexibility. It can serve as a basic unit for array layout, laying the foundation for full light speed and high-quality spectral imaging.

Source: Beijing Institute of Technology

相關推薦
  • Researchers use lasers to measure and manipulate magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-03-05
    查看翻譯
  • Renowned companies such as TRUMPF and Jenoptik participate in high-power laser projects in Germany

    High power laser diodes will be key components of future fusion power plants.Recently, the German Federal Ministry of Education and Research (BMBF) launched a new project called "DioHELIOS". The project will last for 3 years and is part of BMBF's "Fusion 2040" funding program, which aims to build the first nuclear fusion power plant in Germany by 2040.The project will last for three years and rece...

    2024-11-09
    查看翻譯
  • Lorenz competes in the LiDAR market with MEMS galvanometer technology

    At the recently concluded 2024 International Consumer Electronics Show (CES), automotive related technologies and solutions shone brightly, and a group of Chinese LiDAR suppliers competed on the same stage.The technologically advanced products, systematic solutions, continuously increasing delivery and market retention have to some extent proven that in the context of the development of automotive...

    2024-04-13
    查看翻譯
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    查看翻譯
  • GZTECH Global Headquarters and Advanced Light Source R&D and Production Base Launch Construction

    On June 10th, the construction of GZTECH's global headquarters and advanced light source research and development production base was launched. Rendering of GZTECH Global Headquarters and Advanced Light Source R&D and Production Base The project is located in Donghu Comprehensive Bonded Zone, with a total construction area of approximately 40000 square meters. It will integrate GZTECH's i...

    06-13
    查看翻譯