繁体中文

Significant progress made in 808nm high-power semiconductor laser chips

906
2024-06-14 14:41:24
查看翻譯

The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.

808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processing, medical beauty, laser display, scientific research, aerospace and other fields. With the increasing demand for efficient laser solutions in the market, high-power and high-efficiency laser chips have become a key factor driving industry development. The company's R&D team has improved the slope efficiency, high-temperature characteristics, and output power of 808nm high-power semiconductor laser chips through structural upgrades and epitaxial technology optimization; By optimizing the cavity surface coating technology, the damage threshold COMD of the chip cavity surface is increased, thereby significantly improving the reliability of the chip.

The test results show that the high-power 808nm COS laser chip packaged in vertical core optoelectronic packaging has an output power of up to 81W and a maximum photoelectric conversion efficiency (PCE) of 57% at QCW 86A, which reflects the excellent high-temperature characteristics, high damage threshold, and high reliability of the product.

The realization of this innovative achievement highlights the profound technological accumulation and outstanding innovative strength of Lixin Optoelectronics in the field of high-power semiconductor laser chips. It not only enhances the company's competitive position in the domestic market, but also promotes the advancement of solid-state laser technology using such high-power laser chips as pump sources.

Source: Lixin Optoelectronics

相關推薦
  • Korean researchers use laser ablation to create deformable micro supercapacitors

    Recently, a research team from the Korea Institute of Industrial Technology and POSTECH University successfully utilized laser sintering pattern technology to create a deformable micro supercapacitor (MSCs), specifically designed to provide energy storage solutions for soft electronic devices. This breakthrough meets the urgent need for efficient energy storage systems in stretchable devices in...

    2024-05-30
    查看翻譯
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    查看翻譯
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    查看翻譯
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    查看翻譯
  • Processing application of ultrafast laser on bulk metallic glass

    Recently, an international research team led by Professor Zhang Peilei from the School of Materials Science and Engineering at Shanghai University of Engineering and Technology published a review paper titled "Research status of femtosecond lasers and nanosecond lasers processing on bulk metallic glasses (BMGs)" in the renowned journal Optics&Laser Technology in the field of optics and lasers....

    2023-09-18
    查看翻譯