繁体中文

How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

797
2024-06-12 14:40:06
查看翻譯

Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.

Gallium nitride purple surface emitting laser with a power conversion efficiency exceeding 20%. Source: Tetsuya Takeuchi/Minato University


GaN-VCSEL consists of two special semiconductor mirrors called Distributed Bragg Reflectors (DBRs), separated by an active GaN semiconductor layer in the middle, forming an optical resonant cavity where laser is generated. The length of the resonant cavity is crucial for controlling the target laser wavelength (i.e. resonant wavelength).

So far, two VCSEL structures based on gallium nitride have been developed: one is the bottom dielectric DBR, and the other is the bottom aluminum indium nitride (AlInN)/gallium nitride DBR. Both structures can generate VSCEL with optical output power exceeding 20 milliwatts and wall plug efficiency (WPE) exceeding 10%. However, the stopping wavelength bandwidth of AlInN/GaN DBR is narrow, so VCSEL can only emit light within a narrow wavelength range.

In addition, traditional cavity length control methods require pre experiments on the test cavity layer to determine its growth rate, which can lead to errors between the estimated and final thickness of the VCSEL cavity. This error can cause the resonance wavelength to exceed the narrow stopping bandwidth of AlInN/GaN DBR, seriously affecting performance.

Innovation in cavity length control
To address this issue, in a recent study, researchers led by Professor Tetsuya Takeuchi from the Department of Materials Science and Engineering at Nagagi University in Japan developed a new in-situ cavity length control method for gallium nitride based VCSEL optical cavities. By using in-situ reflectance spectroscopy to accurately control the growth of gallium nitride layers, researchers achieved precise cavity length control with a deviation of only 0.5% from the target resonant wavelength. Now, they have further expanded this innovative technology and demonstrated the full cavity length control of VSCEL.

Professor Takeuchi explained, "The cavity of VCSEL not only contains a gallium nitride layer, but also an indium tin oxide (ITO) electrode and a niobium pentoxide (Nb2O5) spacer layer, which cannot be controlled by the same in situ reflectance spectroscopy measurement system. In this study, we developed a technique for accurately calibrating the thickness of these additional layers to achieve efficient VCSEL." Their research findings were published in the Journal of Applied Physics Letters, Volume 124, Issue 13.

Calibration techniques for additional layers
In order to calibrate the thickness of the additional layer, researchers first deposited ITO electrodes of different thicknesses and Nb2O5 spacer layers on GaN test structures grown using in-situ cavity control. Considering that in-situ reflectance measurements cannot be used for these additional layers, they directly used in-situ reflectance spectroscopy measurements to evaluate the resonance wavelength of these test cavity structures. The obtained resonance wavelength undergoes a redshift, meaning that as the thickness of the ITO and Nb2O5 layers increases, the wavelength also increases.

Next, the researchers plotted the functional relationship between resonance wavelength shift and the thickness of ITO and Nb2O5 layers, thereby obtaining accurate information about their optical thickness. They used this information to accurately calibrate the ITO layer and Nb2O5 layer thickness of the target VCSEL resonance wavelength. The resonance wavelength control deviation generated by this method is very small, within 3%, and can be comparable to on-site control methods in terms of optical thickness.

Finally, researchers fabricated GaN VCSEL with pore sizes ranging from 5 to 20 µ m by adding tuned ITO electrodes and Nb2O5 spacer layers to VCSEL cavities grown using in-situ cavity control technology. The deviation between the peak emission wavelength of these VCSELs and the design resonance wavelength is only 0.1%. It is worth noting that thanks to precise cavity length control, VCSEL with a 5-micron aperture achieved 21.1% WPE, which is a significant achievement.

Professor Takeuchi summarized, "Just like high-precision rulers can manufacture fine frames, precise in-situ thickness control of gallium nitride layers, combined with thickness calibration of ITO electrodes and Nb2O5 interlayer, can achieve highly controllable manufacturing of VCSEL. It is a powerful tool for obtaining high-performance and highly repeatable gallium nitride based VCSEL, which can be used in efficient optoelectronic devices."

Source: cnBeta

相關推薦
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    查看翻譯
  • BLM Launches Tunable 4kW Five Axis Laser Cutting System

    Recently, the Italian laser pipe processing group BLM Group announced the launch of an LT-Free five axis laser cutting system that can be used for laser cutting and processing of any three-dimensional metal profile, including bending forming, hydraulic forming, extrusion forming, deep drawing forming, flat or stamped forming of pipe fittings or plates.This five axis laser cutting system can provid...

    2023-10-11
    查看翻譯
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    查看翻譯
  • Lockheed Martin announces expansion of 16000 square feet 3D printing center

    Recently, US military industry giant Lockheed Martin announced that it will significantly increase its additive manufacturing capabilities and expand its factory in Texas. The expansion project includes approximately 16000 square feet of dedicated space for 3D printing technology, and the addition of some of the largest large format multi laser printers in the space (it is worth noting that Lockhe...

    2024-12-02
    查看翻譯
  • Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers....

    03-20
    查看翻譯