繁体中文

NASA will demonstrate laser communications on the space station to improve space communications capabilities

717
2023-09-04 17:12:37
查看翻譯

Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023. 

ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together complete NASA's first two-way end-to-end laser relay system.

(Photo credit: NASA)

Advantages of laser communication systems

Laser communication systems use invisible infrared light to send and receive information at higher data transfer rates. It took about nine weeks for the original radio frequency system to transmit a complete map of Mars back to Earth, while it took about nine days using lasers. As a result, with higher data transfer rates, missions can send more images and videos to Earth in a single transmission. 

Once installed on the space station, ILLUMA-T will demonstrate the benefits of higher data transfer rates for low-Earth orbit missions. Laser communications provide greater flexibility for missions, as well as a quick way to get data from space. NASA is currently integrating this technology in near-Earth, lunar and deep space demonstrations.

In addition to the advantages of faster data transmission rates, laser systems also have key advantages in spacecraft design due to their lighter weight and lower energy consumption. ILLUMA-T, which is about the size of a standard refrigerator, will be attached to the station's external module for demonstration via LCRD. 

Currently, LCRD is demonstrating the benefits of laser relay in geosynchronous orbit (22,000 miles above Earth), further refining NASA's laser capabilities by transmitting data between two ground stations and conducting experiments. Once ILLUMA-T is aboard the space station, the terminal will send high-resolution data, including pictures and video, to the LCRD at a rate of 1,200 megabits per second. The data will then be sent from LCRD to ground stations in Hawaii and California. This demonstration will show how laser communication can benefit low-Earth orbit missions.

ILLUMA-T is being launched as a payload on SpaceX's 29th commercial resupply services mission for NASA. During the first two weeks after launch, ILLUMA-T will be removed from the trunk of the Dragon spacecraft and installed on the station's Japanese Experimental Module Exposure Facility (JEM-EF). 

Once the payload is installed, the ILLUMA-T team will conduct initial testing and on-orbit inspections. Once that's done, the team will launch an onslaught of the payload's first light - a major milestone for the mission that will transmit the first laser beam to the LCRD through its optical telescope. Once the first light appears, data transmission and laser communication experiments will begin and continue throughout the planned mission.

Test lasers in different scenarios

In the future, operational laser communications will complement the radio frequency systems that many space missions still rely on to transmit data back to Earth. While ILLUMA-T is not the first mission to test laser communications in space, it brings NASA one step closer to actually applying the technology.

In addition to LCRD, ILLUMA-T's predecessors include: the 2022 TeraByte InfraRed Delivery system, which is currently testing laser communication on small Cubesats in low Earth orbit; Lunar laser communication demonstration to transmit data to and from lunar orbit and Earth during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; And 2017 Lasercomm Science's optical payload, which demonstrates how laser communication can speed up the flow of information between Earth and space compared to radio signals.

Testing the ability of laser communications to generate higher data transfer rates in a variety of scenarios will help the aerospace community further refine the capabilities of future missions to the moon, Mars and deep space.

Source: OFweek

相關推薦
  • Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

    Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The micr...

    2023-08-15
    查看翻譯
  • Lumentum acquires Hong Kong optical module manufacturer Cloud Light to expand its influence in cloud data centers and network infrastructure

    On October 30th, Lumentum announced the acquisition of Hong Kong optical module manufacturer Cloud Light for $750 million (approximately RMB 5.48 billion), with the aim of expanding its influence in cloud data centers and network infrastructure.It is understood that Cloud Light is a Hong Kong company that provides various optical product solutions, mainly focusing on designing and manufacturing ad...

    2023-11-01
    查看翻譯
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    查看翻譯
  • The wide application of TORNOS mind machine in diversified industrial fields

    TORNOS walking machine, also known as walking CNC lathe or spindle box mobile CNC automatic lathe, occupies an important position in the field of precision manufacturing due to its excellent performance and wide application areas. This machine tool not only integrates mechanical and electrical technologies, but also becomes an indispensable processing equipment in many industrial fields due to its...

    2024-07-24
    查看翻譯
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    查看翻譯