繁体中文

Researchers use blurry light to 3D print high-quality optical components

378
2024-05-11 16:32:03
查看翻譯

Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.

Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D printing method to manufacture precision optical components." "This enables the production of optically smooth surfaces."

In the highly influential research journal Optica of the Optica Publishing Group, these researchers demonstrated this new method for manufacturing millimeter level flat convex optical lenses with imaging performance similar to commercially available glass lenses. They also demonstrated that this method can produce usable optical components in just 30 minutes.

Webber stated, "Due to the economic viability of tomography 3D printers and the materials used, we expect this method to be highly valuable for economically efficient and fast prototyping of optical components." "In addition, the inherent free shape properties of tomography 3D printing allow optical designers to simplify designs by replacing multiple standard optical devices with printed optical devices with complex shapes."

Smooth edges
Fault volume additive manufacturing is a relatively new manufacturing method that uses projected light to cure photosensitive resins in specific areas. It allows the entire part to be printed at once without the need for any supporting structures. However, existing tomography methods cannot directly print lenses with imaging quality, as the pencil shaped beam used generates stripes, forming small ridges on the surface of the components. Although post-processing steps can be used to create smooth surfaces, these methods increase time and complexity, thereby eliminating the advantages of rapid prototyping related to fault printing.

"Due to the strict technical specifications required for functional lenses and the complex and time-consuming manufacturing process, the manufacturing cost of optical components is high," said Dr. Weber. "Fuzzy tomography can be used for low-cost free form design. As technology matures, it can quickly prototype new optical devices, which is useful for anyone from commercial manufacturers to garage inventors."

Create tiny lenses
To test the new method, researchers first created a simple planar convex lens and demonstrated that its imaging resolution can be comparable to commercial glass lenses with the same physical size. It also exhibits micrometer level shape errors, sub nanometer level surface roughness, and point spread functions close to glass lenses.

They also used fuzzy tomography technology to create a 3x3 microlens array and compared it with traditional tomography 3D printed arrays. They found that due to the high surface roughness, traditional printed arrays cannot be used to image business cards, but arrays printed by fuzzy tomography can be used. In addition, researchers also demonstrated the use of a spherical lens imprinted onto optical fibers, which previously could only be achieved using additive manufacturing technology called two-photon polymerization.

They are now committed to improving component accuracy by optimizing the optical patterning method and incorporating material parameters into the printing process. They also hope to introduce automation of printing time to make the system powerful enough for commercial use.
Webber stated, "Fault 3D printing is a rapidly maturing field with applications in many fields." "Here, we leverage the inherent advantages of this 3D printing method to manufacture millimeter level optical components. In this process, we have added a fast and low-cost alternative to optical manufacturing technology, which may have an impact on future technologies."

Source: Laser Net

相關推薦
  • Strengthening the market position: LILA integrates ADAM Lasertechnik

    Laser Integration Laser Applikation (LILA) GmbH is taking over ADAM Lasertechnik on April 1, 2025 and will continue to run the company as part of an external succession plan. This means that not only the expertise but also the proven technology of 3D laser welding with wire feed will be retained.“We are delighted to have found an industry-experienced partner in LILA GmbH, who will continue the bus...

    03-13
    查看翻譯
  • Coherent Axon laser won the 2023 Business Innovation Award from the British Physical Society

    One of the laser leaders in the field of life sciences, Coherent Gao Yi (New York Stock Exchange: COHR), recently announced that its Axon laser won the 2023 Business Innovation Award at the awards ceremony held by the British Physical Society on October 30th.Dr. Vincent D. Mattera, Jr., Chairman and CEO of Coherent, stated that, Coherent, especially our team at the Center for Excellence in Ultrafa...

    2023-11-03
    查看翻譯
  • FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

    The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jo...

    2024-02-14
    查看翻譯
  • XTool enables pre-sale of F1 superfiber and diode laser cutting machines

    Tool has started pre-sales for the F1 Ultra, a 20 watt fiber and diode dual laser engraving machine. OEMs have stated that it is a win-win product and its so-called "flagship" model.Fiber lasers are mainly used for metal materials and usually work faster than diode lasers, but other materials have better performance when using diode lasers. F1 Ultra aims to bridge this gap by using a power of 20W ...

    2024-05-09
    查看翻譯
  • Jingyi Optoelectronics launches a transmittance detector to detect the near-infrared transmittance characteristics of plastic materials

    Laser welding plastic transmittance tester is an important industrial testing equipment used to measure the transmittance of plastic after welding, in order to evaluate welding quality and product performance. With the widespread application of plastic products in various fields, the requirements for plastic welding quality and transparency are also increasing. Therefore, laser welded plastic tran...

    2024-04-11
    查看翻譯