繁体中文

Researchers use blurry light to 3D print high-quality optical components

869
2024-05-11 16:32:03
查看翻譯

Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.

Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D printing method to manufacture precision optical components." "This enables the production of optically smooth surfaces."

In the highly influential research journal Optica of the Optica Publishing Group, these researchers demonstrated this new method for manufacturing millimeter level flat convex optical lenses with imaging performance similar to commercially available glass lenses. They also demonstrated that this method can produce usable optical components in just 30 minutes.

Webber stated, "Due to the economic viability of tomography 3D printers and the materials used, we expect this method to be highly valuable for economically efficient and fast prototyping of optical components." "In addition, the inherent free shape properties of tomography 3D printing allow optical designers to simplify designs by replacing multiple standard optical devices with printed optical devices with complex shapes."

Smooth edges
Fault volume additive manufacturing is a relatively new manufacturing method that uses projected light to cure photosensitive resins in specific areas. It allows the entire part to be printed at once without the need for any supporting structures. However, existing tomography methods cannot directly print lenses with imaging quality, as the pencil shaped beam used generates stripes, forming small ridges on the surface of the components. Although post-processing steps can be used to create smooth surfaces, these methods increase time and complexity, thereby eliminating the advantages of rapid prototyping related to fault printing.

"Due to the strict technical specifications required for functional lenses and the complex and time-consuming manufacturing process, the manufacturing cost of optical components is high," said Dr. Weber. "Fuzzy tomography can be used for low-cost free form design. As technology matures, it can quickly prototype new optical devices, which is useful for anyone from commercial manufacturers to garage inventors."

Create tiny lenses
To test the new method, researchers first created a simple planar convex lens and demonstrated that its imaging resolution can be comparable to commercial glass lenses with the same physical size. It also exhibits micrometer level shape errors, sub nanometer level surface roughness, and point spread functions close to glass lenses.

They also used fuzzy tomography technology to create a 3x3 microlens array and compared it with traditional tomography 3D printed arrays. They found that due to the high surface roughness, traditional printed arrays cannot be used to image business cards, but arrays printed by fuzzy tomography can be used. In addition, researchers also demonstrated the use of a spherical lens imprinted onto optical fibers, which previously could only be achieved using additive manufacturing technology called two-photon polymerization.

They are now committed to improving component accuracy by optimizing the optical patterning method and incorporating material parameters into the printing process. They also hope to introduce automation of printing time to make the system powerful enough for commercial use.
Webber stated, "Fault 3D printing is a rapidly maturing field with applications in many fields." "Here, we leverage the inherent advantages of this 3D printing method to manufacture millimeter level optical components. In this process, we have added a fast and low-cost alternative to optical manufacturing technology, which may have an impact on future technologies."

Source: Laser Net

相關推薦
  • Tianjin University's Photoacoustic Remote Sensing Microscopy Technology Breakthrough New Heights

    Recently, Professor Tian Zhen's team from Tianjin University has made a breakthrough in the field of photoacoustic remote sensing microscopy technology and successfully developed a new type of non-destructive testing method. This technology uses Kaplin high-power femtosecond laser as the key light source, further optimizing the solution to the internal flaw detection limitations of inverted chips,...

    2024-04-16
    查看翻譯
  • Strengthening the market position: LILA integrates ADAM Lasertechnik

    Laser Integration Laser Applikation (LILA) GmbH is taking over ADAM Lasertechnik on April 1, 2025 and will continue to run the company as part of an external succession plan. This means that not only the expertise but also the proven technology of 3D laser welding with wire feed will be retained.“We are delighted to have found an industry-experienced partner in LILA GmbH, who will continue the bus...

    03-13
    查看翻譯
  • The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

    Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.Distribut...

    2023-09-05
    查看翻譯
  • Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

    South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport sh...

    2023-09-22
    查看翻譯
  • Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

    Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improve...

    2023-09-18
    查看翻譯