繁体中文

Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

434
2024-04-30 15:11:39
查看翻譯

Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.

Solar panels have always been praised for their recyclability. However, the thin plastic layer used in the manufacturing process poses challenges that hinder the effective recovery of valuable materials such as silicon and silver.

To solve this problem, NREL's research team has taken a different approach and proposed an innovative solution of directly implementing glass to glass welding in solar cells.

The core of this solution lies in utilizing infrared femtosecond laser technology. By precisely controlling the laser pulse, energy is focused on a specific area of the solar panel in an extremely short amount of time, forming a sturdy and durable glass to glass weld. It is worth mentioning that femtosecond laser technology has been widely applied in the field of medical ophthalmic surgery, such as cataract surgery, and its safety and reliability have been fully verified.

Through laser welding, the demand for plastic laminates in solar panels is completely eliminated, greatly simplifying the recycling process. After the lifespan of the battery panel, these modules made by laser welding can be easily broken, and the glass and metal wires inside can be smoothly recycled, while the silicon material can also be reused.

"Most recyclers generally believe that polymers are the main problem that hinders the recycling process. The emergence of our technology undoubtedly brings new possibilities for the recycling and utilization of solar panels," said David Young, senior scientist at the Efficient Crystal Photovoltaic Group of the NREL Department of Chemistry and Nanoscience.

This research result has been published in the IEEE Journal of Photovoltaics. The research team pointed out that laser welding technology has a wide range of applicability, not only suitable for silicon materials, but also can be used in combination with various materials such as perovskite and cadmium telluride. Due to the highly focused nature of the laser, the heat generated is limited to a very small range and will not cause damage to the battery material. Meanwhile, the strength of the welds inside the glass is equivalent to that of the glass itself, ensuring the long-term stability and durability of the module.

Young further explained, "As long as the glass itself is not cracked, there will be no problems with the weld seam. Moreover, due to the absence of polymers between the glass sheets, the hardness of the welding module has been significantly improved. Our research shows that by appropriately installing and modifying the embossing characteristics of rolled glass, the welding module can become sufficiently hard to meet the requirements of static load testing."

In the past, researchers have attempted to use nanosecond lasers and glass frit fillers for edge sealing, but the results were not ideal. The brittleness of the welds makes them unsuitable for outdoor module design. In contrast, the femtosecond laser welding technology developed by NREL achieves excellent sealing strength at extremely low cost, providing strong technical support for the recycling and utilization of solar panels.

This study is supported by the Durable Module Materials Alliance, which is committed to extending the lifespan of solar panels to 50 years or even longer. Through NREL's innovative laser technology, we are expected to achieve more efficient and environmentally friendly recycling of solar panels in the future, contributing to the sustainable development of renewable energy.

Source: OFweek

相關推薦
  • Scientists develop high-power fiber lasers to power nanosatellites

    The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the...

    2024-01-18
    查看翻譯
  • Advancing Astronomy: Using Laser Guided Star Adaptive Optics to Obtain clearer celestial views

    Adaptive optics is defined as an advanced optical system used to correct the transmission medium between the subject and the image, providing users with clearer images. Adaptive optics helps to use a complex combination of deformable mirrors to correct images in real-time through distortion in the Earth's atmosphere. These images are of greater importance in many vertical industries such as health...

    2024-02-22
    查看翻譯
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    查看翻譯
  • Acta: Revealing the mechanism of defect formation in additive manufacturing

    Main author: Yanming Zhang, Wentao Yana*The first unit: National University of SingaporePublished Journal: Acta MaterialiaResearch backgroundIndustry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of proce...

    02-21
    查看翻譯
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    查看翻譯