繁体中文

Ultra thin two-dimensional materials can rotate the polarization of visible light

1308
2024-04-27 13:54:18
查看翻譯

For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate in one direction but blocks all light in the other direction.

In a recent study, physicists from Germany and India showed that ultra-thin two-dimensional materials such as tungsten selenide can rotate the polarization of visible light at certain wavelengths by several degrees under a small magnetic field suitable for chip use. Scientists from the University of M ü nster in Germany and IISER in Pune, India, published their research findings in the journal Nature Communications.

One of the problems with traditional optical isolators is their considerable volume, ranging in size from a few millimeters to a few centimeters. Therefore, researchers are still unable to manufacture micro integrated optical systems on chips that can compete with everyday silicon-based electronic technology. Currently, there are only a few hundred components on integrated optical chips.

Faraday effect in two-dimensional semiconductors
By contrast, computer processor chips contain billions of switching elements. Therefore, the research work of the German and Indian teams has taken a step forward in the development of miniature optical isolators. The two-dimensional materials used by the researchers are only a few atomic layers thick, making them 100000 times thinner than human hair.

Professor Rudolf Bratschitsch from the University of Minster said, "In the future, two-dimensional materials may become the core of optical isolators and enable on-chip integration of current and future quantum optical computing and communication technologies."
Professor Ashish Arora from IISER added, "Even the bulky magnets required for optical isolators can be replaced by atomic level thin two-dimensional magnets. This will greatly reduce the size of photonic integrated circuits."

The research team deciphered the mechanism that led to their discovery: bound electron hole pairs, also known as excitons, in two-dimensional semiconductors cause strong polarization rotation of light when ultra-thin materials are placed in a small magnetic field.
Arora said, "Conducting such sensitive experiments on two-dimensional materials is not easy because the sample area is very small. Scientists had to develop a new measurement technique that is about 1000 times faster than previous methods."

Source: Physicist Organization Network

相關推薦
  • Laser ablation helps to trace the origin of medieval metals

    Archaeologists have long wondered why the people of Anglo Saxon England began using more silver coins and fewer gold coins between 660 and 750 AD. Researchers in Europe now say they have developed a method to help find the answer. This technology combines laser ablation with traditional trace element analysis to match the isotopic abundance of silver bars in coins with known sources of metal ores ...

    2024-04-13
    查看翻譯
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    查看翻譯
  • Photovoltaic converters for power transmission systems

    Scientists from the University of Hahn in Spain and the University of Santiago de Compostela conducted research to determine the most suitable semiconductor materials for high-power light transmission in terrestrial and underwater environments.HPOT, also known as laser power transfer, is a method of transmitting continuous power to a remote system using a monochromatic light source through an opti...

    2023-12-29
    查看翻譯
  • Future oriented strategic technology: integrated manufacturing of large composite materials with additive and subtractive materials and its key elements

    Thermowood has developed a large-scale additive and subtractive material manufacturing equipment, LSAM, and successfully printed tooling molds on site that can be used for aerospace composite material forming, demonstrating its low-cost and rapid response to composite material manufacturing capabilities to the public.As a large-scale component additive manufacturer, Thermowood has developed a near...

    2024-04-19
    查看翻譯
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    查看翻譯