繁体中文

Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

509
2024-04-18 17:04:51
查看翻譯

Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.
The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.

Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producing metal powders internally for additive manufacturing.
In the past four years, the company has expanded its business scale and strengthened its team. Therefore, it attempts to centralize its data to prevent costly errors, such as sending incorrect designs into production.

"That's why we chose Siemens Xcelerator for digitization to simplify the constantly growing data in our design and production technology processes," said Amazemet CEO Ł Ukasz Ż Rodowski explained. The Amazemet engineering team is utilizing Siemens Xcelerator software to help push its products to the market and further expand the company's operational scale.

"The Siemens Xcelerator product portfolio has improved our efficiency, providing a single platform for managing documents, product development, and manufacturing processes. Its scalability supports our continuous growth, simplifies document management, accelerates design, and eliminates scalability barriers." Ż Rodowski added.

Amazemet adopts Siemens Xcelerator
Amazement is using Siemens NX software and Teamcenter X software, both of which are part of the Xcelerator product portfolio. These platforms are used to assist in the development of post-processing technologies, including inFurner high vacuum furnaces.

This furnace can be heated to 1600 ℃ and is designed to provide reliable heat treatment for 3D printed metal parts. This is an important step in metal additive manufacturing, which is crucial for improving mechanical properties such as hardness, strength, and fatigue resistance.

Siemens NX is a computer-aided design/manufacturing (CAD/CAM) software designed for the design, analysis, and manufacturing processes in 3D printing. NX CAD allows designers to create 3D models, analyze product design feasibility, and share data to accelerate production cycles. The platform also enables users to generate lattice structures, perform construction simulations, and prepare 3D printed parts.

Ż Rodowski stated that NX software significantly shortens product development time. It also improves the stability and reliability of rePowder, and the company's ultrasonic atomizer can produce powdered metal raw materials from any alloy material.

Amazemet also utilizes Teamcenter X to implement cloud based product lifecycle management and collaboration tools. According to reports, this ensures that all files and service documents of the company can be accessed anytime, anywhere.

Mariusz Zabielski, Vice President and Regional Manager of Siemens Digital Industrial Software for Poland and the Czech Republic, believes that accessibility challenges still need to be overcome before additive manufacturing becomes more widely adopted.

"I am pleased to see a Polish company pushing new technologies to the market and enhancing Poland's position as a truly innovative melting pot in the field of additive manufacturing," Zabielski said.

"Amazemet is another perfect example of how innovators and pioneers in various industries adopt the Siemens Xcelerator industry software portfolio to digitally transform and expand their business, and fulfill their commitment to widely adopting metal additive manufacturing."

Using software to accelerate metal 3D printing
Siemens Xcelerator suite is not the only software aimed at optimizing metal 3D printing. At the Additive Manufacturing User Group (AMUG) 2024 meeting held in Chicago last month, Belgian 3D printing company Materialise launched its e-Stage for Metal+software.

This product uses physics based modeling to simplify data and prepare for laser powder bed melting (LPBF) 3D printing, and automatically generates support structures.

The e-stage of Metal+aims to improve the accessibility of metal additive manufacturing and predict areas that are prone to deformation during the 3D printing process. Then generate support to alleviate this situation, prevent 3D printing failures, and simplify post-processing. According to Materialise, this shortens the learning curve of metal 3D printing and promotes its adoption in industrial manufacturing applications.

Last year, 1000 Kelvin, a software company headquartered in Berlin, announced the full commercialization of AMAIZE AI driver software for metal 3D printing. AMAIZE uses artificial intelligence (AI) to create 3D printing formulas, ensuring accurate 3D printing with just one attempt.
After uploading the file to the AMAIZE cloud, the software will analyze the parts and automatically solve any thermal mechanical problems by optimizing scanning strategies and process parameters. This eliminates the need for expensive component simulation software and minimizes the number of physical iterations.

Source: Laser Net

相關推薦
  • GE Additive has been renamed Colibrium Additive, continuing to lead the additive manufacturing industry

    In April 2024, GE Additive was renamed Colibrium Additive. Colibrium Additive (formerly GE Additive) is a subsidiary of GE Aerospace Propulsion and Additive Technology (PAT) and was established at the end of 2016. Nowadays, it is a trusted partner and manufacturer of industrial metal 3D printers and metal powders, as well as a service provider for industrial metal 3D printers and metal powders. It...

    2024-04-30
    查看翻譯
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    查看翻譯
  • Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

    Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds,...

    2023-10-12
    查看翻譯
  • Trumpf Laser releases latest fiscal year data

    Recently, German laser giant Trumpf released data for the fiscal year 2023/24. The latest financial report shows that the group's sales decreased by 4% and order volume decreased by 10% in the fiscal year 2023/24.Despite these setbacks, Germany has become the company's strongest single market for the first time in many years, highlighting a shift in market dynamics.At the end of this fiscal year, ...

    2024-07-19
    查看翻譯
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    查看翻譯