繁体中文

Advancing Astronomy: Using Laser Guided Star Adaptive Optics to Obtain clearer celestial views

199
2024-02-22 14:13:05
查看翻譯

Adaptive optics is defined as an advanced optical system used to correct the transmission medium between the subject and the image, providing users with clearer images. Adaptive optics helps to use a complex combination of deformable mirrors to correct images in real-time through distortion in the Earth's atmosphere. These images are of greater importance in many vertical industries such as healthcare, aerospace, defense, and industrial manufacturing. Adaptive optics solutions also help users obtain finer details of objects away from light sources.

During the forecast period from 2021 to 2028, the market value of laser guided adaptive optics is estimated to reach $2.80865 billion, with a compound annual growth rate of 30.10%. The increasing prevalence of retinal degenerative diseases is an important factor driving the market for laser guided adaptive optics.

The laser guide star adaptive optics market is segmented based on components and end users. The growth between segmented markets helps you analyze niche growth points and entry strategies, and determine the differences between your core application areas and target markets.

According to the components, the laser guide star adaptive optics market is divided into wavefront sensors, mirrors and wavefront modulators.

The laser guided star adaptive optics market is also divided into healthcare, military, defense, and manufacturing industries based on end-users.

The competitive landscape of laser guided adaptive optics market provides detailed information on competitors. Detailed information includes company overview, financial status, revenue generated, market potential, R&D investment, new market plans, regional influence, company strengths and weaknesses, product launches, product width and breadth, and application advantages.

Source: Laser Net

相關推薦
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    查看翻譯
  • Innovating Photonics: Lithium Tantalate Provides Power for the Next Generation of Optoelectronic Circuits

    The new photonic integrated circuit technology based on lithium tantalate has improved cost efficiency and scalability, making significant progress in the fields of optical communication and computing.The rapid development of photonic integrated circuits (PICs) has revolutionized optical communication and computing systems, combining multiple optical devices and functions on a single chip.For deca...

    2024-05-14
    查看翻譯
  • Due to research conducted by scientists from South Korea and the UK, the power of lasers will increase by one million times

    Due to research conducted by scientists from South Korea and the UK, the power of lasers will be able to increase by one million times. The researchers plan to apply this improvement for scientific purposes.The study was led by representatives of Strathclyde University and the Korea Institute UNIST and GIST. Behind the scenes footage of their work in the journal Nature Photonics. It has been prove...

    2023-11-27
    查看翻譯
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    查看翻譯
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    查看翻譯