繁体中文

Scientists demonstrate powerful UV-visible infrared full-spectrum laser

666
2023-08-25 14:29:07
查看翻譯
Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.
b. The bright white light circular spots emitted by the CPPLN sample.
c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.
d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM effects.
Source: Lihong Hong, Liqiang Liu, Yuanyuan Liu, Junyu Qian, Renyu Feng, Wenkai Li, Yanyan Li, Yujie Peng, Yuxin Leng, Ruxin Li, and Zhi-Yuan Li

High brightness ultra-wideband ultra-continuous white light laser has attracted more and more attention in physics, chemistry, biology, material science and other scientific and technological fields. Over the past few decades, many different methods have been developed to produce supercontinuous white lasers.

Most of them utilize a variety of third-order nonlinear effects, such as self-phase modulation (SPM) occurring in microstructured photonic crystal fibers or homogeneous plates, or noble gas-filled hollow fibers. However, the quality of these supercontinuum light sources is subject to some limitations, such as the small pulse energy at the nanojoule level, and the requirements of complex dispersion engineering.

Another more efficient means of expanding the laser spectral range is through the various second-order nonlinear effects (2nd-NL) of the quasi-phase matching (QPM) scheme. However, the spectrum and power scaling performance of these pure 2N-NL schemes are still poor due to the narrow pump band width, limited QPM operating bandwidth, and reduced efficiency of high order harmonic energy conversion.

How to solve these bad limitations in the 2nd-NL and 3rd-NL systems and make both to produce full-spectrum supercontinuum lasers with spectral coverage from ultraviolet to mid-infrared has become a great challenge.

In a new paper published in Light: Science & Applications: A team led by Professor Zhi-Yuan Li and colleagues from the School of Physics and Optoelectronics at South China University of Technology in China has demonstrated an intense, quadruple-frequency UV-Vis-IR full-spectrum laser source (300 nm to 5000 nm, peak value -25 dB) with an energy of 0.54 mJ per pulse. Aerated hollow core fiber (HCF) from a cascade structure, exposed lithium niobate (LN) crystal plates, specially designed chirped periodically polarized lithium niobate crystals (CPPLN) pumped by a 3.9 mm, 3.3 mJ mid-infrared pump pulse.

Pumped by a 3.3mJ 3.9μm mid-infrared femtosecond pulse laser, the HCF-LN system can generate a strong mid-infrared laser pulse of double bandwidth as a secondary FW pump input to CPPLN, which supports efficient broadband HHG processing, further extending the spectral bandwidth to UV-Vis-IR. It is clear that this cascade structure creatively satisfies two prerequisites for the generation of full-spectrum white light: Condition 1, a strongly frequency-doubled pump femtosecond laser, and condition 2, a nonlinear crystal with an extremely high frequency up-conversion bandwidth. In addition, the system involves a large number of synergies between 2nd-NL and 3rd-NL effects.

The synergistic mechanism they have developed provides superior capabilities for constructing UV-Vis-IR global supercontinuum spectra and filling spectral gaps between various HHGS, far exceeding what has been achieved with single-acting 2N-NL or 3rd-NL effects previously employed.

As a result, this cascaded HFC-LN-CPPLN optical module enables previously unachievable levels of strong full-spectrum laser output, not only with great bandwidth (spanning four octave multiplicities), but also with a spectral profile of high flatness (from 300 to 5000 nm, flatness better than 25 dB) and large pulse energy (0.54 mJ per pulse).

"We believe that our proposal is to use the synergy of 2NL-HHG and 3rd-NL SPM effects to create an intense four-octave UV-vision-infrared full-spectrum femtosecond laser source, which is a big step toward building supercontinuous spectral white laser sources with greater bandwidth, energy, higher spectral brightness, and flatter spectral profiles." "This intense full-spectrum femtosecond laser will provide a revolutionary tool for spectroscopy and find potential applications in physics, chemistry, biology, materials science, information technology, industrial processing and environmental monitoring," the scientists said.

Source: Chinese Optical Journal Network
相關推薦
  • Duke University: Laser imaging holds promise for early detection of risky artworks

    Compared to Impressionist paintings taken 50 years ago, upon closer inspection of Impressionist paintings in museums, you may notice some strange things: some are losing their bright yellow hue.Taking the dramatic sunset in Edward Munch's masterpiece "The Scream" as an example. The once bright orange yellow parts of the sky have faded to off white.Similarly, in his painting "The Joy of Life", Henr...

    2024-05-14
    查看翻譯
  • Laser company nLIGHT announces financial results for the second quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the second quarter of 2024.According to the financial report, nLIGHT achieved a revenue of $50.5 million in the second quarter of 2024, a year-on-year decrease of 5.2% and an increase of 13% compared to the first quarter; The GAAP net loss for the second quarter was $11.7 million...

    2024-08-20
    查看翻譯
  • Widely tunable terahertz laser enhances photo induced superconductivity in K3C60

    Researchers at the Max Planck Institute for Material Structure and Dynamics (MPSD) in Hamburg, Germany, have long been exploring the effect of using custom laser drivers to manipulate the properties of quantum materials to deviate from equilibrium states.One of the most eye-catching demonstrations of these physics is unconventional superconductors, where enhanced electron coherence and super trans...

    2023-10-13
    查看翻譯
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    查看翻譯
  • Ultra capillary properties of composite liquid absorbing cores manufactured by laser powder bed melting additive manufacturing

    Researchers from Sichuan University, the Key Laboratory of Advanced Special Materials and Preparation Processing Technology of the Ministry of Education, and the Nuclear Additive Manufacturing Laboratory of China Nuclear Power Research and Design Institute reported on the study of the ultra capillary performance of laser powder bed melting additive manufacturing composite structure liquid absorbin...

    03-20
    查看翻譯