繁体中文

FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

189
2024-02-14 10:10:14
查看翻譯

The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jointly committed to creating a compact sensor platform for laser based detection of critical underwater infrastructure such as offshore wind turbines.

Lidar systems excel in long-distance measurement and provide accurate 3D data. Although laser based systems are common for geodetic measurements on land, underwater surveying and topographic measurements traditionally rely on cameras and sonar due to underwater light attenuation and turbidity. However, the two lidar systems launched by Fraunhofer IPM are capable of conducting underwater 3D measurements and aerial depth measurements, marking a significant advancement in this field.

The underwater LiDAR system ULi uses the pulse flight time method to map underwater infrastructure with millimeter level accuracy. The system performs static scanning or scanning while underwater vehicles or ships are in motion. ULi is packaged in a pressure resistant casing, capable of diving into depths of hundreds of meters and measuring objects at distances of tens of meters. The measurement accuracy of this system is ten times that of some sonar systems, and it generates an accurate 3D model of the object.

Through the airborne depth measurement laser scanner ABS, Fraunhofer IPM has launched the first laser system capable of measuring coastal terrain from the air. The system weighs about three kilograms and is the size of a shoe box, with two lasers of different wavelengths. Although traditional laser depth measurement systems are too large and heavy for standard drones, ABS is very lightweight and does not require a flight permit. The system can measure with an accuracy of twice the depth of Secchi, with an accuracy of only a few millimeters.

ULi and ABS systems both use full waveform analysis to check measurement data. This type of signal processing can separate echo sequences modulated by water surface, water surface, and suspended particles, and extract high-resolution terrain data.

In the future, FGI will combine two systems. "The combination of these two systems provides us with a novel and powerful tool for drawing coastlines and 3D measurement objects in deep places," said Professor Juha Hyypp ä, Director of Remote Sensing and Photogrammetry at FGI, excitedly. We will see unprecedented levels of data quality.

The CoLiBri research project funded by the Fraunhofer Association is a collaborative project between FGI, Fraunhofer IPM, and the Freiburg Center for Sustainable Development. The project aims to develop a comprehensive monitoring process for underwater infrastructure and coastal areas, promote collaborative use of the system, and evaluate the potential of its various applications.

Source: Laser Net

相關推薦
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    查看翻譯
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    查看翻譯
  • Nature Photonics reports a new type of nonlinear optical crystal - all band phase matched crystal

    Short wave ultraviolet all solid-state coherent light sources have the characteristics of strong photon energy, practicality and precision, and high spectral resolution. They have significant application value in laser precision processing, information communication, cutting-edge science, and aerospace fields.The core component of obtaining all solid-state shortwave ultraviolet lasers is nonlinear...

    2023-10-07
    查看翻譯
  • Combined spectral lasers can unlock the potential of laser plasma accelerators

    A team of researchers in Berkeley Lab's Accelerator Technology and Applied Physics (ATAP) division has developed a new technique that combines fiber lasers of different wavelengths to generate ultra-short laser pulses. The research is in the journal Optics Letters.This work could advance the development of laser plasma accelerators (LPA), which have the potential to push the frontiers of high-en...

    2023-08-04
    查看翻譯
  • Ruisheng Clyde Aerospace Company Commercializes TNO's Satellite Communication Laser Terminal

    AAC Clyde Space, a small satellite technology multinational company headquartered in Uppsala, Sweden, has obtained the right to manufacture and distribute laser satellite communication terminals using the optical technology of the Dutch research institution TNO.TNO's technology helps to transmit satellite generated data to Earth through lasers, with the potential to achieve high speed and security...

    2024-05-24
    查看翻譯