繁体中文

Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

892
2024-02-03 10:38:25
查看翻譯

Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.

In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the comprehensive industrial application of this technology.

This achievement will not only bring practical benefits to companies seeking deeper penetration welding, but also significantly improve welding quality, reduce oxidation problems, and minimize the time required for cleaning parts after welding.

According to CVE, vacuum laser welding, as a relatively new connection technology, has a welding depth 2-3 times that of traditional laser welding methods. However, the issue of optical pollution has always hindered the widespread application of this technology in industry.

The optical protection system of CVE ensures that the cleanliness of welded components is comparable to that of electron beam welding, while also ensuring a longer lifespan of the laser coupling window. Low cost consumable window, continuously welded at low power (3kW) for up to 3 hours without significant weld degradation.

In the past two years, with funding support from the UK Innovation UK, teams from CVE and Cranfield University have jointly established testing systems, conducted in-depth research on various aspects of vacuum laser technology, and experimented with various concepts and solutions. The experimental data of these systems were used to develop an optical protection system that can operate at extremely low levels of particle generation.

Currently, CVE is working on manufacturing vacuum laser welding machines using this technology. The company stated that its optical protection system ensures the cleanliness of welded components comparable to electron beam welding. This breakthrough technological advancement will provide global engineers with more welding options and inject new vitality into innovation and development in the industrial manufacturing field.

Source: OFweek Laser Network

相關推薦
  • Which automotive parts can use laser soldering technology

    Laser soldering is widely used in the manufacturing of automotive parts. Here are some common automotive parts that can be welded using laser soldering:Automotive electronic control systemEngine Control Unit (ECU): The engine control unit is the "brain" of the car engine, which receives signals from various sensors and controls the operation of the engine based on these signals. Laser soldering ca...

    02-10
    查看翻譯
  • The research team developed additive manufacturing (AM) technology based on hydrogel injection, and related research was published on Nano Letters

    It is reported that the research team of California Institute of Technology has developed an additive manufacturing (AM) technology based on hydrogel injection, which uses two-photon lithography technology to produce 3D metal with a characteristic resolution of about 100 nm.The relevant research is published in the journal Nano Letters, titled 'Suppressed Size Effect in Nanopillars with Hierarchy ...

    2023-09-25
    查看翻譯
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    查看翻譯
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    查看翻譯
  • Innovative nanoparticle analysis: achieving breakthrough 3D imaging using X-ray lasers

    The latest progress in X-ray laser technology has opened up a new era of nanoscale exploration, bringing unprecedented opportunities for materials science and nanotechnology. Researchers have developed a novel imaging technique that can directly visualize separated nanosamples in free flight, capturing their complex structures with stunning details. This breakthrough method relies on single cohere...

    2024-03-05
    查看翻譯