繁体中文

Single photon avalanche diode for millimeter level object recognition using KIST

811
2024-02-03 10:17:08
查看翻譯

LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.

LiDAR calculates the distance and generates a three-dimensional image by measuring the time it takes for photons released by the transmitter to impact an object, reflect and return to the receiver. The higher the accuracy of object recognition, the smaller the value of "timing jitter", which is a small change in detection time when a single photon detector on the receiver converts an optical signal into an electrical signal.

According to the Korean Academy of Science and Technology, under the guidance of Dr. Myung Jae Lee, a team from the Institute of Postsilicon Semiconductors has created a "single photon avalanche diode" that can recognize millimeter level objects using 40nm backlit CMOS image sensor technology.

The development of SPAD is extremely difficult, and currently only Sony in Japan has successfully commercialized LiDAR based on SPAD and supplied it to Apple products based on its 90nm backlit CMOS image sensor technology.

Although the timing jitter performance of Sony SPAD is about 137-222 ps, it is not yet sufficient to achieve the user recognition, gesture recognition, and precise shape recognition of objects required for medium and short distance LiDAR applications. Sony's SPAD is more effective than the backlit SPAD reported in the literature.

The single photon sensor element developed by KIST has more than twice the jitter performance at 56 ps, with a distance resolution of about 8 mm, and has great potential as a medium to short range LiDAR sensor element.

Specifically, SPAD was created based on 40nm backlit CMOS image sensor technology through collaborative research with SK Hynix, and is expected to be immediately localized and commercialized.

This study was funded by the Korea Institute of Science and Technology and the Korea National Research Foundation, and was highlighted at the 2023 International Conference on Electronic Devices held in San Francisco, USA on December 12, 2023, from December 9 to 13.

IEDM is one of the most important conferences for semiconductor industry and research professionals, attended by major global semiconductor companies such as SK Hynix, Samsung Electronics, and Intel.

Source: Laser Net

相關推薦
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    查看翻譯
  • Outlook - Future of miniaturized lasers

    The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks ...

    2023-12-19
    查看翻譯
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    查看翻譯
  • New Progress in Research on Three Lattice Photonic Crystal Surface Emission Lasers at Changchun Institute of Optics and Mechanics

    Recently, Tong Cunzhu, the research team of the Chinese President of Science, Chunguang Institute of Mechanical Mechanics, made important progress in the research field of photonic crystal surface emitting lasers (PCSEL), proposed a three lattice structure and achieved a low threshold 1550nm PCSEL. Relevant achievements were published in Light: Science and Application vol.13, 442024, and the famou...

    2024-03-15
    查看翻譯
  • Multinational research team achieves breakthrough in diamond Raman laser oscillator

    Recently, the team led by Professor Lv Zhiwei and Professor Bai Zhenxu from Hebei University of Technology, in collaboration with Professor Richard Mildren from Macquarie University in Australia and Professor Takashige Omatsu from Chiba University in Japan, successfully achieved direct output of Raman vortex optical rotation with large wavelength extension in a diamond Raman laser oscillator. This...

    02-27
    查看翻譯