繁体中文

Developing nanocavities for enhancing nanoscale lasers and LEDs

702
2024-01-29 13:42:27
查看翻譯

As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.

In the journal Optical Materials Letters, researchers have demonstrated that the modal volume of their new nanocavity is one order of magnitude lower than previously shown in III-V group materials. III-V group semiconductors have unique characteristics that make them suitable for optoelectronic devices.

The significant spatial limitation of light demonstrated in this work improves the interaction between light and matter, allowing for greater LED power, lower laser threshold, and higher single photon efficiency.

The study was conducted by scientists from the Nanophotonics Center at the Technical University of Denmark. Their goal is to study a new type of dielectric optical cavity that allows for deep subwavelength optical confinement by using the concept they call extreme dielectric confinement.

EDC cavities may generate extremely efficient computers, where deep subwavelength lasers and photodetectors are integrated into transistors to reduce energy consumption by improving the interaction between light and matter.

In current research, the EDC cavity in III-V semiconductor indium phosphide was initially constructed by researchers using an orderly mathematical technique that relaxed geometric constraints and optimized the topology. Then, they used dry etching and electron beam lithography to construct the structure.

"The characteristic size of EDC nanocavities is as small as a few nanometers, which is crucial for achieving extreme light concentrations, but they also have significant sensitivity to manufacturing changes. We attribute the successful implementation of cavities to the improved accuracy of the InP manufacturing platform, which is based on electron beam lithography followed by dry etching," Xiong added.

The second stage of topology optimization is based on the relatively small dielectric feature size achieved by researchers through improved manufacturing methods. After the last optimization cycle, the mode volume of the nanocavity is only 0.26 ³, Among them λ  Is the wavelength of light, and n is its refractive index.

This achievement is four times smaller than the diffraction limit volume of the commonly referred to nanocavity, which is equivalent to a lightbox with a side length of half the wavelength.

Researchers have pointed out that although silicon has recently produced cavities with similar characteristics, III-V group semiconductors have direct band to band transitions, while silicon does not. These transformations are necessary for utilizing Purcell enhancement provided by nanocavities.

Xiong concluded, "Prior to our work, it was uncertain whether III-V group semiconductors would achieve similar results as they did not benefit from advanced manufacturing technologies developed for the silicon electronics industry.".

Currently, researchers are attempting to further reduce pattern volume by improving manufacturing accuracy. In order to manufacture useful nanolasers or nanoLEDs, they also hope to use EDC cavities.

Source: Laser Net

相關推薦
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    查看翻譯
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    查看翻譯
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    查看翻譯
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    查看翻譯
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    查看翻譯