繁体中文

Researchers have discovered new multiphoton effects in quantum interference of light

545
2024-01-24 11:44:07
查看翻譯

An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research.

"We have demonstrated through experiments that the interference effect between thermal light and parametric single photons can also lead to quantum interference with the background field. For this reason, the background cannot be simply ignored and subtracted from the calculation, as has been the case so far," said Professor Michael Kues, Director of the Institute of Photonics at Leibniz University in Hanover and member of the board of directors of the Phoenix D Excellence Cluster.

The leading scientist is doctoral student Anahita Khodadad Kashi, who is engaged in research on photon quantum information processing at the Institute of Photonics. She studied how the visibility of the so-called Hong Ou Mandel effect is affected by multiphoton pollution.

"Through our experiment, we have overturned the previously valid assumption that the multiphoton component only damages visibility and can therefore be subtracted from the calculation," said Khodadad Kashi. We have discovered a new fundamental feature that has not been considered in previous calculations. Our newly developed model can predict quantum interference, and we can measure this effect in experiments.

Scientists discovered their findings while conducting experiments in the laser laboratory. When they initially followed the original calculation method, they obtained negative results. "But the result is physically impossible," said Khodadad Kashi. The team started troubleshooting the experimental setup and computational model together.

"When the experimental results deviate significantly from expectations, scientists begin to question previous hypotheses and seek new explanations," Kuss said.

They jointly developed a new thermal field quantum interference theory, which uses parameterized single photons. Lucia Caspani, a quantum researcher at Strathclyde University in Glasgow, was the first to test this method. Next, Khodadad Kashi presented her theory and experimental results at an international conference, including the Photonics West held in San Francisco. There, she discussed her model with other scientists and obtained confirmation of her results.

Through new theories and experimental verification, Kues's team has made significant contributions to a better understanding of quantum phenomena. "These findings may be important for quantum key distribution, which is necessary for future secure communication, especially how to explain quantum interference effects to generate keys," said Khodadad Kashi.

However, many questions remain unanswered, Kues said. There is little research on the multiphoton effect, so a lot of work still needs to be done.

Source: Laser Net

相關推薦
  • The construction of China's first attosecond laser device in Dongguan provides strong impetus for breakthroughs in multiple major fundamental scientific issues such as quantum computing

    On October 3rd, the 2023 Nobel Prize in Physics was announced, recognizing scientists who have studied attosecond physics, marking the beginning of the attosecond era for humanity.At present, China's first attosecond laser device, the "Advanced attosecond Laser Facility", is being prepared and built in Dongguan, Guangdong, providing strong impetus for breakthroughs in multiple major basic scientif...

    2023-10-07
    查看翻譯
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    2024-07-08
    查看翻譯
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    查看翻譯
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    查看翻譯
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    查看翻譯