繁体中文

Researchers have created the first organic semiconductor laser to operate without the need for a separate light source

501
2023-11-29 13:54:45
查看翻譯

OLED is located at the top and is formed by an organic layer between the contacts. Apply voltage to it, inject charge and generate light, which in turn excites organic laser. Organic lasers contain a grating that can generate feedback and diffract some of the laser out of the structure.

Organic laser
Researchers have created the first organic semiconductor laser to operate without the need for a separate light source, which has been proven to be extremely challenging.
The new all electric laser is more compact than previous versions and operates in the visible light region of the electromagnetic spectrum, making it suitable for sensing, sensing, and spectroscopic applications.

A laser works by reflecting light back and forth, typically in an optical cavity containing a gain medium placed between two mirrors. When light is reflected between mirrors, the gain medium amplifies it, stimulating more light emission and producing coherent beams with a very narrow spectral range.

In 1992, the first organic laser was introduced. However, it uses a separate light source to drive its gain medium, which makes the design complex and limits its application. Since then, researchers have been trying to find a way to manufacture an organic laser that only uses an electric field to drive it.

Due to the work of Kou Yoshida and his colleagues at the University of St. Andrews in Scotland, this 30-year exploration has just reached its destination.

world record
There are two main strategies for designing electrically driven organic lasers. The first method is to place electrical contacts in an organic gain medium and inject charges through them. However, this is difficult to achieve because the injected charge absorbs light through the material's emission spectrum through the so-called triplet state. In addition, the contacts themselves also absorb light.
That's why Yoshida chose another approach: keeping charges, triplets, and contacts at a distance from the gain medium of the laser in space.

This is not an easy task either, as it means manufacturing a pulsed blue organic light-emitting diode with a light output intensity that should break world records, allowing it to trigger gain media and save additional light sources.

"In order to manufacture this device, we initially manufactured OLED and laser cavities separately, and then transferred OLED to the surface of the laser waveguide," Professor Ifor Samuel explained. The careful integration of these two parts is crucial for the gain medium to obtain strong electroluminescence generated inside OLED.

In order to complete the project, the team used diffraction gratings on thin film lasers to provide distributed feedback of laser emission in the thin film plane, while also diffracting the outgoing laser beam from the surface.

A slowly accelerating technology
Organic semiconductor devices are widely considered a "slow" technology because the charge mobility in organic materials is usually several orders of magnitude lower than that in crystalline silicon or III-V group semiconductors. But this innovation may start to change this perception and expand the scope of use of organic lasers.

As for the application, researchers claim that the new all electric organic semiconductor laser can be easily integrated into medical devices used in offices - various light based detection and spectroscopy devices for diagnosing diseases or monitoring symptoms.

Source: Laser Net

相關推薦
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    查看翻譯
  • Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

    Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.LLE is the...

    2024-03-04
    查看翻譯
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    查看翻譯
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    查看翻譯
  • Researchers have made breakthrough discoveries in the field of nanophotonics

    Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.A mode-locked laser is a type of lase...

    2023-11-20
    查看翻譯