繁体中文

Commitment to achieving 100 times the speed of on-chip lasers

374
2023-11-13 14:43:08
查看翻譯

Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.

By operating these lasers on such a time scale, researchers can study the rapid occurrence of physical and chemical phenomena.
For example, the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within a material. These ultra short pulses are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

A New Method for Manufacturing Ultrafast Lasers
In an article in the journal Science, Alireza Marandi, an assistant professor of electrical engineering and applied physics at the California Institute of Technology, described a new method developed by his laboratory for manufacturing this type of laser on photonic chips, called a mode-locked laser.

Lasers are manufactured using nanoscale components that can be integrated into optical based circuits similar to those found in modern electronics based on electrical integrated circuits.

Ultra fast laser for research
This type of ultrafast laser is so important for research that this year's Nobel Prize in Physics was awarded to three scientists in recognition of their development of lasers that generate attosecond pulses.

On the other hand, these lasers are currently very expensive and bulky, and Alireza Marandi pointed out that he is exploring ways to achieve this time scale on chips that can be several orders of magnitude cheaper and smaller in size, with the aim of developing affordable and deployable ultrafast optonics technologies.

in summary
Ultra fast lasers are crucial for research and industry, but their cost and size remain the main obstacles. The work of Professor Marandi and his team aims to overcome these challenges by developing mode-locked lasers on photonic chips, making these technologies easier to obtain and more affordable. Their research can pave the way for new applications in various fields, from basic research to industry.

To better understand
What is ultrafast laser?
An ultrafast laser is a type of laser that can emit extremely short pulses, approximately one trillionth of a second (one picosecond) or shorter. These lasers are particularly useful in biological, chemical, and physical research and can be used to study rapidly occurring phenomena.

Why is ultrafast lasers important for research?
Ultra fast lasers enable researchers to study extremely fast physical and chemical phenomena, such as the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within materials. They are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

What is a mode-locked laser?
A mode-locked laser is an ultra fast laser that can be manufactured on photonic chips. These lasers are made of nanoscale components that can be integrated into optical based circuits similar to those found in modern electronic products based on electrical integrated circuits.

What are the advantages of ultrafast lasers on chips?
Compared with traditional ultrafast lasers, on-chip ultrafast lasers can be several orders of magnitude cheaper and have a smaller volume, making them easier to use in research and industry. In addition, they can also be combined with other components to build complete ultrafast photonics systems on integrated circuits.

What are the future goals of ultrafast laser chips?
The goal of the researchers is to improve this technology so that it can operate at shorter time scales and higher peak power. The goal is to achieve 50 femtoseconds, which will be 100 times higher than the current device that generates 4.8 picosecond pulses.

Source: Laser Network

相關推薦
  • Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

    Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.This technology is developed in response to biophoton sensing technology, mainly utilizing ...

    2023-08-22
    查看翻譯
  • TriLite has partnered with AMS OSram to develop AR smart glasses displays

    TriLite has announced a technical collaboration with ams OSRAM, a global leader in smart sensors and transmitters. Ams Osram will supply its sub-assembled RGB laser diode to "light up" TriLite's Trixel® 3 laser beam scanner (LBS), the world's smallest AR smart glasses projection display.The award-winning Trixel® 3 LBS offers breakthrough compactness and light weight, as well as a bright an...

    2023-09-06
    查看翻譯
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    02-21
    查看翻譯
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    查看翻譯
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    查看翻譯