繁体中文

Researchers have successfully developed the world's first superconducting broadband photon detector

661
2023-11-02 14:44:08
查看翻譯

Researchers at the National Institute of Information and Communication Technology in the United States have invented a new structure of a superconducting strip photon detector that can achieve efficient photon detection even in wide strips, and have successfully developed the world's first superconducting wide strip photon detector.

The band width of the detector is more than 200 times that of traditional superconducting nanoband photon detectors. This technology helps to solve the problems of low productivity and polarization dependence in traditional SNSPD. The new SWSPD is expected to be applied to various advanced technologies such as quantum information communication and quantum computers, enabling these advanced technologies to be applied in society as soon as possible.

This work is published in the journal Optical Quantum.
Photon detection technology is a strategic core technology that is currently being intensively researched and developed globally in many advanced technology fields such as quantum information communication and quantum computing to achieve innovation. It is also an innovative technology in fields such as live cell fluorescence observation, deep space optical communication, and laser sensing.

The NICT research team has developed an SNSPD with a band width of 100 nm or less. They successfully achieved high-performance beyond other photon detectors and applied them to quantum information communication technology, proving their practicality. 

However, the preparation of SNSPDs requires the use of advanced nanoprocessing techniques to form nanoband structures, which can lead to changes in detector performance and hinder the improvement of productivity. In addition, the polarization dependence of superconducting nanoribbons due to their winding structure also limits their application as photon detectors.

In this work, NICT invented a new structure called "high critical current group structure", which can achieve efficient photon detection even by widening the band width in superconducting strip photon detectors. It successfully developed a SWSPD with a width of 20 microns, which is more than 200 times wider than traditional nanostrip photon detectors, and achieved high-performance operation for the first time in the world.

The nanobelt type developed by NICT requires the formation of extremely long superconducting nanobelts with a bandwidth of 100 nm or less, in a winding and tortuous shape. The broadband type can now be formed using only a single short straight superconducting tape.

This SWSPD does not require nanomachining technology and can be manufactured through high productivity universal lithography technology. In addition, due to the wider bandwidth of the stripe compared to the incident light spot illuminated from the optical fiber, polarization dependence in the nanostrip detector can be eliminated.

Through the performance evaluation of the detector, the detection efficiency in the telecommunications band is 78%, which is equivalent to 81% of the nanoband type. In addition, the numerical value of timing jitter is better than that of nanostrip type.

Compared with the nanobelt type, this achievement enables photon detectors to have higher productivity and superior performance and characteristics. Nanobelt type has been positioned as an indispensable photon detection technology in advanced technology fields such as quantum information communication. This technology is expected to be applied to various quantum information communication technologies and become an important foundational technology for achieving the networked quantum computer advocated by JST's lunar landing goal 6.

In the future, the team will further explore the HCCB structure in SWSPD, which can efficiently detect photons not only in the telecommunications band, but also in a wide range of wavelengths from visible light to mid infrared. In addition, they will also attempt to further expand the size of the photon receiving area to expand applications such as deep space optical communication technology, laser sensing, and live cell observation.

Source: Laser Network

相關推薦
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    查看翻譯
  • Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

    Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structura...

    2024-01-06
    查看翻譯
  • The technological iteration route of automotive millimeter wave radar chips

    The rapid development of intelligent cars and autonomous driving technology has made millimeter wave radar inconspicuous, and the widespread application of millimeter wave radar has driven the technological evolution of MMIC.From the expensive gallium arsenide (GaAs) process in the early days to the mainstream CMOS and SiGe processes today, and then to the future promising FD-SOI process, the cont...

    2024-12-07
    查看翻譯
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    查看翻譯
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    查看翻譯