繁体中文

More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

847
2023-11-01 14:59:21
查看翻譯

μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.

It is understood that scientists at the Lawrence Livermore Laboratory (LLNL) Ignition Facility (NIF) in the United States have proposed a plan called "Science and Safety Intensive Compact μ The meson source "(ICMuS2) aims to quickly generate μ Mesons, using high-power lasers to accelerate capture μ The time required for meson images, thereby reducing the required exposure time.

This project is a huge challenge for particle physics detection. John Harton from the High Energy Physics Group in the Department of Physics at Colorado State University said. John Harton will lead the Colorado State University team responsible for developing collaborative projects μ The meson detector, he said:“ μ The number of meson particles far exceeds that of other particles, and we are using various tools to screen them.

μ The key step in sub generation is the wake left by the ultra intense short laser pulse accelerating the propagation of electrons in the plasma.
ICMuS2 plans to develop a portable, laser based μ The technical design of meson emitters has a flux greater than that of naturally occurring ones μ Mesons are several orders of magnitude larger and can be used for a wide range of imaging applications. This includes special nuclear material exploration, mining, and geophysics. Brendan Reagan, from NIF and the Advanced Photonics Technology Project in Photonics Science, stated that in addition to laser development, the project will also combine advanced numerical simulations of high-energy particle physics, plasma physics, high-performance computing systems, as well as system engineering and integration.

This work was carried out in collaboration with the extreme light infrastructure ERIC (ELI) of the Czech ELI beamline facility, Colorado State University, University of Maryland (UMD), Lockheed Martin, XUV Lasers, and Lawrence Berkeley National Laboratory (LBNL). LLNL also participated in another activity under the MuS2 project led by LBNL.

The preliminary experiment will be conducted using a plasma waveguide developed by UMD in an advanced laser at the Extreme Photonics High Repetitive Rated Watt Laser Facility at Colorado State University. High energy acceleration and μ The meson generation experiment will be conducted at ELI Beamlines using its L4-Aton 10-PW laser system.

The first phase of this four-year plan will focus on principle verification experiments and the impact of laser generated μ A clear demonstration of mesons. The second stage will attempt to demonstrate high energy μ Production and Transportability of Mesons μ Design of meson sources.

In addition, all aspects of the plan are based on the development of large-aperture Thulium laser technology under the guidance of the LLNL laboratory's research and development program, as well as the investment in laser driven accelerators by the High Energy Physics and Accelerator Research and Production Office of the US Department of Energy Science Office.

Source: Laser Manufacturing Network

相關推薦
  • Goethe, University of Central Florida research team showcases light and thin achromatic diffractive liquid crystal optical systems

    Headdisplay devices such as Apple Vision Pro, Meta Quest, and PICO are expected to completely change the way we perceive and interact with various digital information. By providing more direct interaction with digital information, MR has become one of the key driving forces for the metaverse, spatial computing, and digital twins, and has begun to be widely applied in fields such as intelligent tou...

    2023-09-26
    查看翻譯
  • University of Würzburg creates' world's smallest pixel '

    The emergence of smart glasses is a product of the new era of technology and is widely regarded as a key technology for the future. However, due to technological limitations, applications are also restricted. In addition, if the size of high-efficiency luminescent pixels is reduced to the wavelength of emitted light, their use will also be limited by traditional optics.Now, physicists at Julius-Ma...

    3 天前
    查看翻譯
  • The University of Illinois combines the light emitted by multiple VCSEL into a single coherent mode

    Today, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smart phones. They are renowned for their ability to integrate seamlessly into semiconductor chips, VCSELs are still considered to be an active field of research, and many researchers believe there are still important applications waiting to be discovered.The laboratory of...

    08-04
    查看翻譯
  • Research progress on the interaction between strong laser and matter Electromagnetic induced transparency effect in plasma physics

    The transmission of electromagnetic waves (such as lasers) in plasma is a fundamental issue in plasma physics. In general, electromagnetic waves cannot be transmitted in high-density plasma, but their transmission and energy transfer play a crucial role in applications such as fast ignition laser fusion, laser particle acceleration, and ultra short and ultra bright radiation sources.In 1996, S. fr...

    2024-03-21
    查看翻譯
  • From Fiction to Reality: Laser Cutting Technology Has Entered the Shipbuilding Industry

    Laser cutting is a type of metal processing. In industry, there are three main cutting methods: mechanical cutting, thermal cutting, and a set of high-precision cutting methods. Laser technology belongs to the third category. The cutting in this method occurs due to the influence of the laser beam on the product. In fact, it is the molten metal produced by rapid pulse point melting and then blowin...

    2023-12-28
    查看翻譯