繁体中文

The United States is expected to use "AI+lasers" to deal with space debris in the future

262
2023-10-20 13:51:14
查看翻譯

Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deployed in space in the future, the US "Space" website said on the 19th.

The report states that space debris has an increasing impact on the safety of spacecraft in various countries. When Amazon launched two internet prototype satellites on the 6th, it was forced to delay the launch for 6 minutes to avoid colliding with space debris.

In July of this year, due to the same reasons, the launch of India's historic "Lunar Ship 3" probe was also forced to be postponed. Although space debris has been a concern for decades, efforts to address this space debris have only recently truly begun to get back on track. The idea proposed by the Space Systems Warfare Research Laboratory at the University of West Virginia is to install artificial intelligence (AI) controlled space-based lasers on satellites or other specialized platforms for monitoring space debris. When a space debris is suspected of colliding with valuable space assets such as the International Space Station or satellites, laser pulses are used to push them into safer orbits.

According to the report, the statement released by the laboratory states: "Our goal is to develop a reconfigurable space-based laser network and AI algorithms. These algorithms will make this network possible and maximize its benefits." The plan has received funding from NASA and is still in its early stages. The ultimate goal is that the system will decide on which lasers to use to target a certain space debris, At the same time, ensure that the generated trajectory does not collide.

It is said that measuring the risk level of space debris is quite difficult because not every object in orbit can be tracked. According to data from the European Space Agency, the radar system on the Earth's surface is currently tracking approximately 34600 space debris, but there may still be 130 million fragments in orbit that cannot be accurately detected or tracked due to their small size. The report states that although the mass and volume of these space debris are small, their speed is fast enough to pose a threat to orbiting satellites or spacecraft.

Previously, countries had a preference for clearing space debris, but whether it was using high-strength materials to create "space debris nets" for salvage or using high-energy lasers for burning, there were limitations. In contrast, using space-based lasers to process small space debris may be more practical, as they can be sent into predetermined orbits using laser pulse irradiation, with relatively low power requirements for lasers. The report states that using multiple lasers can more effectively alter the trajectory of space debris, which "cannot be achieved by a single laser".

In March of this year, NASA released a report showing that space-based lasers are not affected by weather compared to ground based lasers. The report states that this AI powered space cleaning system not only has cost advantages, but its precise tracking ability for space debris also helps improve the safety of space launches.

Source: Global Times

相關推薦
  • Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nick...

    2023-09-01
    查看翻譯
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    查看翻譯
  • Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

    Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.This financing is led by the US Innovation Technology Fund (USIT) and involves hea...

    2024-07-18
    查看翻譯
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    查看翻譯
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    查看翻譯