繁体中文

Scientists are using lasers to create lunar paving blocks

347
2023-10-14 10:46:24
查看翻譯

Original Hal Bowman 9000 Scientific Razor
The 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAM

By using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these experiments were conducted on Earth using alternatives to lunar dust, these findings demonstrate the feasibility of the technology and indicate that it can be replicated on the moon. However, according to the author, further work may be needed to improve this process.

Lunar dust poses a significant challenge to lunar rovers, as due to low gravity levels, they often float around and may damage equipment when disturbed. Therefore, infrastructure such as roads and landing pads is crucial for alleviating dust problems and promoting lunar transportation. However, the cost of transporting building materials from Earth is high, making the use of available resources on the moon crucial.

Gin é s Palomares, Miranda Fateri, and Jens G ü nster used carbon dioxide lasers to melt a fine-grained material called EAC-1A (developed by ESA as a substitute for lunar soil) to simulate how lunar dust melts into solid matter through focused solar radiation on the moon.

The author attempted laser beams of different intensities and sizes (up to 12 kW and 100 mm respectively) to create sturdy materials, although they determined that intersecting or overlapping laser beam paths could lead to cracking. They developed a strategy to use a laser beam with a diameter of 45 millimeters to generate a triangular, hollow geometric shape about 250 millimeters in size. The author suggests that these can be interlocked to form a sturdy surface on a large area of lunar soil, which can serve as roads and landing pads.

Rendered images of roads and landing pads paved on the lunar surface. Source: Liquifer Systems Group


In order to reproduce this method on the moon, the author calculated that approximately 2.37 square meters of lenses need to be transported from Earth to replace lasers as solar concentrators. The relatively small equipment size required will be an advantage for future lunar missions.

Source: Yangtze River Delta Laser Alliance

相關推薦
  • New Progress in Research on Three Lattice Photonic Crystal Surface Emission Lasers at Changchun Institute of Optics and Mechanics

    Recently, Tong Cunzhu, the research team of the Chinese President of Science, Chunguang Institute of Mechanical Mechanics, made important progress in the research field of photonic crystal surface emitting lasers (PCSEL), proposed a three lattice structure and achieved a low threshold 1550nm PCSEL. Relevant achievements were published in Light: Science and Application vol.13, 442024, and the famou...

    2024-03-15
    查看翻譯
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    查看翻譯
  • Researchers successfully 3D printed polymer based robotic arms through laser scanning

    Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.Inkbit, a derivative compa...

    2023-11-16
    查看翻譯
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    查看翻譯
  • Laser solder paste: comprehensive analysis of working principle and application fields

    Laser solder paste is a new type of high-tech laser soldering material that is widely used. Laser solder paste achieves high-precision control of circuit board soldering through laser heating in the electronic manufacturing process. This article will provide a detailed introduction to the working principle of laser solder paste and its applications in fields such as electronic manufacturing and au...

    2024-04-11
    查看翻譯