繁体中文

Scientists use glass to create femtosecond lasers

373
2023-09-28 17:12:33
查看翻譯

Image source: Federal Institute of Technology in Lausanne, Switzerland

 

Science and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glass? According to the latest issue of Optics magazine, scientists at the Federal Institute of Technology in Lausanne, Switzerland have successfully achieved this, with lasers no larger than credit cards and easier to align.

Researchers stated that due to the lower thermal expansion of glass compared to traditional substrates, it is a stable material. Therefore, they chose glass as the substrate and used commercial femtosecond lasers to etch special grooves on the glass to accurately place the basic components of the laser. Even in precision manufacturing at the micron level, the grooves and components themselves are not precise enough to achieve laser quality alignment. In other words, the reflector is not fully aligned, so at this stage, their glass device cannot be used as a laser.

So, researchers further designed etching to position a mirror in a groove with micro mechanical bending, which can locally twist the mirror when irradiated by femtosecond laser. By aligning the mirror in this way, they ultimately created a stable, small-scale femtosecond laser.

Despite its small size, the peak power of the laser is about 1 kilowatt, and the time to emit pulses is less than 200 femtoseconds, which is so short that light cannot pass through human hair.

This method of permanently aligning free space optical components through laser material interaction can be extended to various optical circuits, with extreme alignment resolutions as low as sub nanometer level.

 

Reprinted from:LDWORLD

相關推薦
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    查看翻譯
  • Scientists have demonstrated a new way to make infrared light from quantum dots, and the experiments are still in the early stages

    Scientists at the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers say this approach shows great promise; Although the experiment is still in its early stages, these quantum dots are already as efficient as existing conventional methods.These points could one day form the basis of infrared lasers, as well as small and inexpensive ...

    2023-09-08
    查看翻譯
  • LAP launches CAD-PRO Xpert, an industrial laser projector using cutting-edge technology platforms

    LAP launched its latest version of the industrial laser projection system CAD-PRO Xpert at this year's JEC World. This innovation signifies the company's commitment to providing the most advanced laser engineering for various industries to achieve precise, efficient, and reliable laser guidance and positioning tasks, which is an important milestone.Redefining laser projection in the production pro...

    2024-03-07
    查看翻譯
  • Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

    Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast...

    06-07
    查看翻譯
  • DIT and SK Hynix sign KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. According to DIT, the equipment supplied to SK Hynix this time is mainly a laser annealing kit. DIT was founded in 2005 and was listed on KOSDAQ in 2018. Its main focus is o...

    01-20
    查看翻譯