繁体中文

Laser gyroscopes measure small changes in daytime length on Earth

527
2023-09-19 14:36:29
查看翻譯

Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.

The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolonging a day by a few milliseconds. Many of these changes are well-known. For example, one of the changes is caused by tidal forces, which are generated by the gravitational pull of the moon and sun, causing the Earth to deform. Scientists know how to predict these effects on Earth's rotation. However, other changes caused by fluctuations in the Earth's atmosphere and water bodies are more difficult to estimate.

The gyroscope, known as the "G", is located at the Wetzl Geodetic Observatory in Germany and aims to measure these small impacts. This is the so-called ring laser gyroscope. In it, the laser beam propagates around a square ring of 4 meters on each side. One bundle rotates clockwise, while the other bundle rotates counterclockwise. The wavelength of a beam of light that is aligned with the direction of Earth's rotation will be elongated, while a beam of light that propagates against the direction of Earth's rotation will contract. When combined, two beams of light with slightly different wavelengths will generate a "beat" signal, similar to two slightly out of tune notes.

Researchers reported in the September 18th issue of the journal Nature Photonics that this rhythm reveals the speed of Earth's rotation, allowing G to measure the length of a day with an accuracy of over one millisecond.

Other methods of measuring the Earth's rotational speed rely on external references. For example, telescopes can use the position of distant quasars (bright cores of active galaxies) to determine the degree of Earth's rotation. But these technologies provide the average results within a day. G measures the rotation rate every few hours. Its measurements were conducted in an underground laboratory.

Physicist Ulrich Schreiber of the Technical University of Munich stated that there is no need to understand the external world, "because gyroscopes measure absolute rotation." This means that the rotation it measures is not relative to other references, but rather the rotation itself.

Scientists have previously measured the Earth's rotation and tilt using other laser gyroscopes (SN: 7/17/20). But they have not yet measured the length of a day to the high accuracy achieved by G. The gyroscope is also stable enough to operate continuously for several months, allowing researchers to sort out changes that occur over a long time scale.

The function of G is unique: "This measurement is considered impossible for other detectors," said physicist Angela Di Virgilio of the National Institute of Nuclear Physics in Pisa, Italy, who was not involved in the new study. Therefore, they obtained some results from this impressive instrument, which is a good thing.

These measurements can help scientists improve their models of Earth's air circulation and ocean currents. In the future, scientists hope to measure more elusive effects through improved ring laser gyroscopes. According to Albert Einstein's general theory of relativity, rotating planets drag spacetime. A ring laser gyroscope may one day perceive the twists and turns of time and space.

Source: Laser Network

相關推薦
  • Laser Photonics officially launches its SaberTech laser cutting system

    Recently, Laser Photonics (LPC) officially launched its SaberTech laser cutting system. This system not only enriches the product line of LPC's laser cleaning, welding, marking, and engraving systems, but also marks another important breakthrough for the company in the field of laser technology. This product release is another heavyweight measure after LPC's latest generation laser cleaning system...

    2024-06-19
    查看翻譯
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    查看翻譯
  • Vast's Haven-1 program has become the world's first commercial space station equipped with SpaceX Starlink lasers

    Vast's Haven-1 program will become the world's first commercial space station, equipped with SpaceX's Starlink laser terminal, providing connections to its crew users, internal payload racks, external cameras, and instruments at speeds of gigabits per second and low latency.Max Haot, CEO of Vast, said: "If you need to provide high-speed, low latency, and continuous Internet connection on the orbit...

    2024-04-10
    查看翻譯
  • Tsinghua University develops efficient and stable perovskite quantum dot deep red light devices

    Semiconductor quantum dots have the advantages of high quantum yield, narrow emission spectrum, and compatibility with solution processes. They have shown broad application prospects and enormous economic value in the field of optoelectronic materials and devices, and related research has won the Nobel Prize in Chemistry in 2023.Compared with traditional II-VI and III-V quantum dots (such as CdSe,...

    03-18
    查看翻譯
  • NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

    NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian...

    2024-05-13
    查看翻譯