繁体中文

Is CTC technology in the booming new energy industry likely to disrupt the fiber laser industry?

186
2023-09-18 14:06:03
查看翻譯

Recently, the term CTC technology has become a hot topic in the new energy vehicle industry. During the relatively slow period of electrochemical innovation, this structural innovation effectively helped the new energy industry reduce costs and increase efficiency, while also increasing the range of new energy vehicles to a certain extent. However, recently the author learned that the concept of CTC technology has been introduced into the laser industry, and lasers designed and manufactured using this new concept have also led the transformation of fiber lasers.

What is CTC technology?
The inspiration for CTC technology comes from the field of aircraft design, which improves the originally independent fuel tank structure inside the wing to integrate the fuel tank and wing, reducing the number of components and the final assembly process. This improvement not only improves production efficiency and reduces production costs, but also increases fuel loading and improves aircraft range.

This concept was first introduced by Tesla into the new energy vehicle industry and applied to the Model Y model. Data shows that with the use of Tesla's integrated body die-casting technology and CTC technology, the Model Y new car has reduced weight by 10%, reduced body components by 370, and increased battery life by 14%.

Prior to this, the structure of power batteries was very cumbersome, consisting of battery cells, modules, and battery packs from the inside out. Many battery cells were packaged into a single module, and many modules were then packaged into battery packs before being installed in cars. This period was known as the era of standardized modules. But this battery pack structure only provides electricity from the cells, and the "over packaged" structure not only requires the design and production of additional components, but also takes up additional space, resulting in "less power to drive more loads".

Domestic battery manufacturers are also aware of this issue and have made relevant improvements. The main idea is to design larger modules, reduce the number of modules, or even design without modules, in order to minimize the number of parts and space occupation at the module level as much as possible, represented by the CTP technology of Ningde Times and BYD's blade batteries.

The current hot topic of CTC technology is the integrated design of battery chassis represented by Tesla, BYD, and Zero Run. The advantages of this technology are very obvious, which can not only drive car companies to reduce costs, but also help increase range, and in addition, increase interior space to improve driving and riding comfort.

What are the impacts of CTC technology on the laser industry?
On the 15th of this month, Caplin held an online press conference to officially disclose the technological core of the successful lightning series lasers - the fiber laser version of CTC technology (Chip to Chassis, chip integrated technology). This technical concept is in line with the integration of wing fuel tank and battery chassis. It integrates the design of chips, heat sink structures, pump modules, and lasers, eliminating the need for chip to pump modules and subsequent assembly processes, effectively reducing the volume and weight of the pump source, and achieving a high degree of integration.

It is precisely due to the forward-looking layout research of CTC technology that Kaipinde was the first to propose a CTC technology solution suitable for the field of fiber lasers, and officially launched the Lightning series fiber lasers based on the CTC technology core in 2022. Lightning lasers have not only achieved success in the market and are highly popular among users, but have also directly led the trend of miniaturization and lightweight development of fiber lasers, paving the way for fiber lasers to compete in power and brightness.

CTC technology promotes the miniaturization and lightweight of lasers, significantly improving the portability and high integration of downstream equipment, directly leading to innovation in downstream equipment and application scenarios. The most obvious one is the laser handheld welding market. The early handheld laser welding machine was equipped with a chiller and an old-fashioned 1000W single module laser, with a cabinet volume of 1.05m3 (equivalent to the volume of an old-fashioned washing machine). With the popularization of the Lightning series laser, water-cooled laser handheld welding machines with ultra small size (close to the volume of air-cooled handheld welding) have emerged in the market, bringing water-cooled laser handheld welding into the era of trunk. The improvement in portability has greatly expanded the usage scenarios of water-cooled handheld laser welding, and also supplemented the shortcomings of air-cooled handheld welding machines, which are portable but difficult to maintain long-term stability in high-temperature environments.

In addition, miniaturized lasers have also triggered structural upgrades in the more widely used laser cutting field. In the past, fiber laser cutting machines had to be equipped with separate air conditioning rooms for the laser, which not only required additional land but also increased the difficulty of installation and maintenance. At present, some equipment factories have extended the concept of CTC to the field of equipment manufacturing, eliminating independent air conditioning rooms and directly integrating fiber laser into the control cabinet of the machine tool, allowing the laser to be shipped together with the complete set of equipment, truly achieving the goal of disassembly and use, saving more than 30% of equipment installation time and reducing transportation costs.

Why did Kaiprin take the lead in mastering the CTC technology of lasers?
Of course, although CTC technology has obvious advantages, it is not easy to replicate. Even in the new energy vehicle field that has been brewing for many years, only a few companies have truly mastered CTC technology. This is because although the main engine factory is familiar with the car manufacturing process, they usually do not have the ability to design battery cells, and battery factories are often not familiar with the design and manufacturing essentials of car chassis, both of which are lacking. Only enterprises that understand both battery cells and car manufacturing, as well as the highly integrated ability of the three electrical systems, can truly leverage the advantages of CTC technology.

The same problem exists in the laser field. Pure pump source manufacturers and laser manufacturers, although they have rich technological accumulation in their respective fields, lack experience in solving problems through integration and series connection, and cannot fully solve the problems of integration and heat dissipation after chip integration.

Kaiprin is a pioneer enterprise in the localization of pump sources, with over ten years of experience in pump source manufacturing. At the same time, it also ranks among the top sellers of fiber lasers, belonging to manufacturers who understand both pump sources and laser machines. Therefore, it can take the lead in cracking the laser CTC technology password and successfully achieving mass production, ultimately leading the miniaturization era of fiber lasers.

Summary
Nowadays, miniaturization has become the third widely recognized development direction in the industry after high-power and high brightness, and CTC technology is the key to achieving miniaturization and long-term stable operation of lasers. At the same time, CTC technology has also laid the foundation for the "shrinkage" of higher power lasers. With the mature application of CTC technology and the success of the Lightning series lasers, Kaiprin has developed and developed a new generation of high brightness, quasi single mode Thunder optical platform. The overall size of the Thunder 12kW fiber laser is reduced by 70% compared to the Lightning series, making it the smallest 12kW fiber laser on the market.

In addition, the implementation of CTC technology also ensures that higher power lasers can operate at temperature. It is understood that Kaiprin has broken through the power limit and achieved high beam quality output through power combining technology and ultra-high power output technology, ultimately achieving a stable output of 100kW ultra-high power.

From the development of the new energy vehicle industry, the CTC concept has gradually triggered technological changes in the new energy vehicle industry from its emergence to upgrading. Although the CTC technology in the field of fiber lasers has not yet reached the level of disrupting industry recognition, it has significantly improved the performance and stability of lasers, effectively expanding the application scenarios of lasers. We have reason to believe that the further development and application of CTC technology in the future will bring broader development prospects for more potential application fields.

Source: OFweek

相關推薦
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of attosecond high spatiotemporal resolution imaging

    The attosecond light source has the characteristics of ultra short pulse width, short wavelength, high coherence, and high-precision synchronous control, and has extremely high potential for application in the field of ultrafast imaging. Especially when the attosecond light source reaches the "water window" band, oxygen and hydrogen atoms have weak absorption of X-rays in this band, so water is re...

    2024-10-14
    查看翻譯
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    查看翻譯
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    查看翻譯
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    查看翻譯
  • Mazak will showcase high-speed fiber lasers on Tube 2024

    Yamazaki Mazak designed the FT-150 fiber laser tube processing machine for high-speed cutting of small and medium-sized diameter pipes, for use in Tube 2024. The machine tool will be controlled by a new type of pipe cutting CNC, which will be exhibited for the first time in Europe.Tube 2024 will be held from April 15th to 19th in Dusseldorf, Germany. Mazak will be exhibited at booth C17 in Hall 5....

    2024-03-16
    查看翻譯