繁体中文

The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

482
2023-08-04 16:47:18
查看翻譯

The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities.

The key component of EUV lithography is the EUV light source, which involves generating and manipulating 13.5 nm of high-energy light. This is done by using lasers to generate plasma from tin droplets, which emit extreme ultraviolet radiation. The EUV light is then reflected and focused using a series of precisely designed mirrors, transferring the desired pattern onto a silicon wafer coated with a light-sensitive material called a photoresist.

 

EUV lithography has several advantages over previous lithography techniques. First, it can significantly increase chip density, enabling the production of more powerful and complex ics.

 

Second, it simplifies the manufacturing process and increases production efficiency by reducing the number of steps required for pattern transfer. Finally, EUV lithography allows for better control of critical dimensions and reduced pattern variability, resulting in improved chip performance and yield.

 

EUV lithography plays a key role in the production of advanced ics for a variety of applications such as high-performance computing, artificial intelligence and mobile devices.

 

Foundries are expected to grow at the highest CAGR during the forecast period.

In the commercial sector, foundries are manufacturing plants that specialize in providing semiconductor manufacturing services to semiconductor companies and integrated device manufacturers (IDMs). Foundries are primarily focused on manufacturing processes for the semiconductor industry and do not engage in chip design.

 

Foundries play a vital role in the semiconductor industry by providing manufacturing services to companies that lack their own manufacturing facilities or choose to outsource chip production.

 

Fabless companies and ID work with foundries to transfer their chip designs, known as intellectual property (IP), to foundries for manufacturing. Well-known foundries that provide semiconductor manufacturing services including EUV lithography include companies such as TSMC, GlobalFoundries, Samsung Foundries, and others.

 

The growth of foundry companies can be attributed to their substantial investments in EUV lithography, with Asia-Pacific countries being the main contributors to the expansion and advancement of the EUV lithography market.

 

During the forecast period, the EUV mask segment is expected to grow at the second highest CAGR in the EUV lithography equipment market.

 

EUV masks, also known as EUV masks or EUV photomask, play a crucial role in an advanced lithography process called extreme ultraviolet lithography (EUVL). EUV lithography is a state-of-the-art technology for manufacturing the next generation of next-generation semiconductor devices characterized by smaller feature sizes and enhanced performance.

 

EUV masks help to pattern integrated circuits on semiconductor wafers by containing circuit patterns projected onto the wafer during the photolithography process. Unlike traditional optical masks used in older lithography techniques, EUV masks are specifically designed to function in ultraviolet light at wavelengths of about 13.5 nanometers. They consist of thin substrates coated with multiple layers of reflective material that help to reflect and focus EUV light onto the wafer, enabling precise and high-resolution patterning. The complex structure of the EUV mask involves advanced manufacturing techniques and strict quality control measures to ensure the accuracy and reliability of the circuit pattern. Several companies are involved in the manufacture of EUV masks and related products,

The Asia Pacific region is expected to grow at the highest CAGR during the forecast period.

 

Taiwan is home to leading semiconductor companies such as Taiwan Semiconductor Manufacturing Company (TSMC), the world's largest dedicated semiconductor foundry. TSMC has been at the forefront of adopting and advancing EUV lithography technology to be able to produce advanced chip sizes with smaller sizes and higher performance.

 

The company has made significant investments in EUV infrastructure and has been instrumental in driving the development and commercialization of EUV lithography systems. With its strong semiconductor ecosystem and commitment to technological innovation, Taiwan plays a vital role in increasing the capability and widespread adoption of EUV lithography in the semiconductor industry.

 

Some companies are innovating in EUV lithography technologies and systems. For example, in August 2020, TSMC developed the world's first environmentally friendly dry cleaning technology for EUV light hoods, designed to replace traditional cleaning processes.

 

Source: Laser Network

相關推薦
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    查看翻譯
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    查看翻譯
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    查看翻譯
  • Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

    Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this bat...

    2023-09-25
    查看翻譯
  • Snapmaker Announces Its First Dedicated Laser Cutter, the Ray, in 20w and 40w Flavors

    Snapmaker has been making three-in-one manufacturing tools -- The Snapmaker, Snapmaker 2 and Artisan -- for over six years now. These machines have changeable tool heads that can be used for 3D printing, laser cutting and CNC machining. At the beginning of this year, it branched out to make adedicated 3D printer, the J1-- a dual print-head machine that works very well -- and today the ...

    2023-08-28
    查看翻譯