繁体中文

Upgrading interferometric measurement technology with new guiding star lasers

31
2025-11-17 11:13:31
查看翻譯

The European Southern Observatory (ESO) team has recently made significant breakthroughs in the field of interferometric measurement technology. With the help of four newly installed lasers at the Paranal Observatory in Chile, the research team has successfully created a guiding star, marking a new era in interferometric measurement technology.

The successful generation of the laser guided star is an important component of the ESO GRAVITY+project and a major upgrade to the observatory's four eight meter telescope system.

GRAVITY+ is itself a large and complex upgrade to the ESO's Very Large Telescope Interferometer (VLTI), which has been revealing hidden details of stars and astronomical objects for many years.

 



Unique facility: GRAVITY+


"This is a very important milestone for a facility that is completely unique in the world," said Antoine Mérand, VLTI Programme Scientist.

VLTI combines light from several individual telescopes of the Paranal site's Very Large Telescopes, either the four eight-meter Unit Telescopes (UT) or the four smaller Auxiliary Telescopes. The installation of a laser at each of the previously unequipped UTs is a key achievement of this long-term project, transforming the VLTI into the most powerful optical interferometer in the world, noted ESO.

GRAVITY+ also encompasses infrastructural changes to the telescopes and upgrades to the VLTI underground tunnels, where the light beams are brought together.

ESO's original GRAVITY interferometer had operated since 2016, incorporating a cryogenically cooled Beam Combining Instrument for generating interferometric fringes from the received stellar light, and infra-red adaptive optics to compensate for atmospheric disturbance.

Correcting atmospheric blur anywhere on the sky

Guide stars are a vital element in ground-based observations, whereby lasers stimulate a point light source in the local atmosphere that can then be used as a reference point for an adaptive optics operation to remove the effects of atmospheric turbulence.

Until now adaptive optics corrections for the VLTI have been done by using bright reference stars that needed to be close to the target, limiting the number of objects that can be observed. The installation of a laser at each of the UTs means that a guide star is now created 90 kilometers above Earth's surface, enabling the correction of atmospheric blur anywhere on the sky.

This unlocks the whole southern sky to the VLTI and enhances its observing power dramatically, noted the ESO team. Astronomers will now be able to study distant active galaxies and directly measure the mass of the supermassive black holes that power them, as well as observe young stars and the planet-forming discs around them.

In addition, the VLTI’s improved capabilities will drastically increase the amount of light that can travel through the system, making the facility up to 10 times more sensitive. This allows observations of isolated stellar black holes, free-floating planets that do not orbit a parent star and stars closest to the Milky Way's supermassive black hole Sgr A*.

A first target for the team's test observations was a cluster of massive stars at the center of the Tarantula Nebula, a star-forming region in our neighboring galaxy the Large Magellanic Cloud. These revealed that a bright object in the nebula, thought to be an extremely massive single star, is actually a binary of two stars close together.

"The VLTI with GRAVITY has already enabled so many unpredicted discoveries," said Principal Investigator Frank Eisenhauer from project partner the Max-Planck Institute for Extraterrestrial Physics (MPE). "We are excited to see how GRAVITY+ will push the boundaries even further."

Source: optics.org

相關推薦
  • Strengthening the market position: LILA integrates ADAM Lasertechnik

    Laser Integration Laser Applikation (LILA) GmbH is taking over ADAM Lasertechnik on April 1, 2025 and will continue to run the company as part of an external succession plan. This means that not only the expertise but also the proven technology of 3D laser welding with wire feed will be retained.“We are delighted to have found an industry-experienced partner in LILA GmbH, who will continue the bus...

    03-13
    查看翻譯
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    查看翻譯
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    查看翻譯
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    查看翻譯
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    查看翻譯