繁体中文

Michigan State University uses laser pulses to impact gold nanoparticles for crystal growth

444
2025-10-16 10:24:49
查看翻譯

To make crystals suitable for use as optoelectronic materials, the key is to precisely control the crystallization, but this control is difficult.

Producing lead halide perovskites, promising components for next-generation solar cells and photodetectors, has proven particularly challenging, with slow growth rates and uncontrolled nucleation being common issues.

A project at Michigan State University (MSU) has now developed a new way to stimulate crystal growth using laser pulses, which could accelerate the development of these advanced next-gen technologies.

Described in ACS Nano, the seed-free plasmonic heating-driven approach could mean that "the traditionally tricky crystal-growing process is turned on its head."

 

 

Growth potential: controlled crystallization


"With this method, we can essentially grow crystals at precise locations and times," said Md Shahjahan from MSU. "It's like having a front-row seat to watch the very first moments of a crystal's life under a microscope, only here we can also steer how it develops."

The technique leverages plasmonic heating in gold nanoparticles, and the ability of a laser to precisely control the temperature in the immediate vicinity of a nanoparticle's surface. This localized thermal gradient can influence supersaturation conditions in specific areas, and effectively control nucleation and growth.

This offers researchers the ability to "draw" crystals with levels of control that could transform fields ranging from clean energy to quantum technologies, said the project. It could also help expand the understanding of how crystals form, providing "a unique opportunity for real-time visualization of the crystallization process with sub-millisecond resolution using high-speed microscopy."

Optical properties maintained

In trials using methyl-ammonium lead bromide (MAPbBr3) perovskites, the team employed a 660-nanometer laser, tuned to match the localized surface plasmon resonance (LSPR) behavior of the gold nanoparticles.

Unlike many other solutes, MAPbBr3 exhibits a decrease in solubility with rising temperature, so the laser's localized heating causes the precursor solution to become supersaturated near the surface, driving the formation of stable crystal nucleii which then act as seeds for further growth.

"We found that in a narrow range around 60 mW laser power, there is an optimal thermal environment at the focal spot, whereby single crystals nucleate and continue to grow steadily," wrote the project in its paper. The crucial optical properties of the resulting crystals were later found to be comparable to naturally grown counterparts.

The project's next steps will include using multiple lasers of different colors to draw even more intricate crystal patterns, and attempting to create entirely new materials that can't be made through conventional methods.

"Now that we can 'draw' crystals with lasers, the next step is to make larger and more complex patterns, and to test how these crystals perform in real devices," said Elad Harel from the MSU DeepSpec Lab. "We're just beginning to scratch the surface of what’s possible."

Source: optics.org

相關推薦
  • Changchun Institute of Optics and Fine Mechanics has developed a high brightness HiBBEE non-uniform waveguide semiconductor laser

    High brightness semiconductor lasers have extremely important applications in fields such as laser radar. Traditional semiconductor lasers face challenges such as large vertical divergence angle, elliptical beam output, multiple lateral modes, and poor beam quality, which limit the direct application of high brightness semiconductor lasers.In response to this challenge, the team from the Bimberg S...

    03-18
    查看翻譯
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    查看翻譯
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    查看翻譯
  • The world's smallest blue light laser

    Russian scientists have successfully developed the world's smallest blue nanolaser, with a volume of only 0.005 cubic micrometers, breaking through the diffraction limit theory that the size of the light source must not be smaller than its wavelength. This breakthrough has opened up a new technological path for the development of cutting-edge fields such as ultra high definition displays, quantum ...

    11-19
    查看翻譯
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the field of high-intensity laser cracking of high-density polyethylene

    Recently, a team from the National Key Laboratory of Ultra strong Laser Science and Technology at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with the Arctic University of Norway (UiT) to make progress in the efficient cracking of high-density polyethylene (HDPE) using strong laser molecular bond breaking technology. The research results were publ...

    06-16
    查看翻譯