繁体中文

Chinese researchers enhance perovskite lasers by suppressing energy loss

68
2025-08-25 10:23:09
查看翻譯

Limiting Auger recombination enables “record” quasi-continuous wave laser output.

For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.
Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that makes them difficult and costly to combine with mainstream silicon technology.

All-inorganic perovskite films have emerged as a promising alternative because they can be produced inexpensively, work with many substrate types, and offer strong optical properties. But one major obstacle has stood in the way: at room temperature, it has been difficult to get perovskite lasers to run in continuous or near-continuous modes without quickly losing their charge carriers to an effect known as Auger recombination.

 


Suppressing Auger recombination for high-performance perovskite VCSELs


A research team at Zhejiang University, Hangzhou, China, has demonstrated a simple method to overcome this problem, leading to record-setting performance for perovskite lasers under near-continuous operation.

As reported in Advanced Photonics, their approach uses a volatile ammonium additive during the annealing process of polycrystalline perovskite films. This additive triggers a “phase reconstruction” that removes unwanted low-dimensional phases, reducing channels that accelerate Auger recombination. The result is a pure 3D structure that better preserves the charge carriers needed for lasing, without adding significant optical loss.

‘Auger recombination’

To understand the improvement, the team analyzed how electrons and holes recombine under different pumping conditions. Auger recombination—where energy from a recombining electron-hole pair is given to another carrier instead of emitted as light—becomes especially problematic when the input light is delivered in longer pulses or continuous beams.

In those situations, carrier injection occurs on a timescale similar to or longer than the Auger lifetime, leading to rapid carrier loss and preventing the build-up of population inversion needed for lasing. By suppressing this process, the researchers were able to sustain the carrier densities required for efficient stimulated emission.


High-performance perovskite lasing via phase-reconstruction Auger suppression. Click for info


With their optimized films, the team built a single-mode vertical-cavity surface-emitting laser (VCSEL) that achieved a low lasing threshold of 17.3 μJ/cm2 and an impressive quality factor of 3850 under quasi-continuous nanosecond pumping. This performance marks the best reported to date for a perovskite laser in this regime.

The results point toward a practical route for making high-performance perovskite lasers that could work under true continuous-wave or electrically driven conditions—key milestones for their integration into future photonic chips and potentially flexible or wearable optoelectronic devices.

Source: optics.org

相關推薦
  • Instrument Systems will showcase advanced optical measurement solutions for display technology in San Jose next week

    In the 2024 Showweek Germany Pavilion, Instrument Systems will showcase the LumiTop series, a series of imaging colorimeters designed specifically for high-precision and fast 2D measurements, to meet specific needs in AR/VR, automotive, and continuous production environments.The LumiTop 5300 AR/VR is a high-resolution camera developed specifically for evaluating near eye displays, which will recei...

    2024-05-09
    查看翻譯
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    查看翻譯
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    查看翻譯
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    查看翻譯
  • Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

    Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause ...

    2024-01-23
    查看翻譯