繁体中文

The ECSTATIC fiber optic project worth 5.1 million euros aims to prevent bridge collapse

506
2025-08-18 10:25:32
查看翻譯

A new European research project is exploring whether the same fibre-optic cables that carry our internet could also serve as real-time sensors for hidden damage in infrastructure, including bridges, railways, tunnels and energy pipelines.

 


The €5.1 million ECSTATIC project, coordinated by Aston University in the UK, is trialling this breakthrough approach in a major UK city, using a heavily-used railway viaduct as its first live test site. The goal is to detect subtle structural shifts, stress, and vibrations in real time, using laser light pulses sent through fibre-optic cables already embedded right beneath our feet.

“Our aim is to create a global nervous system for critical infrastructure,” said Prof. David Webb, ECSTATIC project coordinator. “We are hoping to turn existing fiber-optic cables into a 24/7 early-warning system, detecting the tiniest tremors or stress fractures before they become catastrophic. If successful, it will be the difference between fixing a fault and cleaning up a tragedy.”

Light listens

Installing physical sensors across entire transport and energy networks would cost billions and cause major disruption. But the ECSTATIC project is taking a different route: it uses the infrastructure that’s already in place.

At the project’s first demonstration site (a major 19th-century rail viaduct carrying tens of thousands of trains per year), researchers will send ultra-precise laser pulses through buried fiber-optic cables. As trains pass overhead, the fibers subtly flex and vibrate. These movements change how the light behaves inside the cable, altering the phase and polarisation of the light, creating an optical fingerprint of the forces acting on the structure.

By measuring these changes and interpreting them using a new dual-microcomb photonic chip and AI signal processing, ECSTATIC aims to pinpoint early warning signs of damage or fatigue. Significantly, it works without interrupting internet traffic and without laying a single new cable.

“Cracks in bridges, viaducts, or tunnels don’t announce themselves; structures wear down gradually and silently, with the first signs of failure remaining invisible until it’s too late,” added Prof. Webb. “The UK and many places across Europe have hundreds of ageing railway bridges, with millions of vehicles passing under or over them each year. Many of the UK bridges date back to Victorian times, which could present a ticking time-bomb unless we take decisive steps to monitor them now.”

Preventing disasters

The need for early-warning systems is clear from recent bridge collapses in Europe that have cost lives and paralysed cities. In Italy, the Genoa Morandi Bridge disaster in 2018 killed 43 people when a 200-meter section of highway collapsed, despite internal warnings about structural risk years earlier. As recently as last year in Germany, the Carolabrücke in Dresden – a vital lifeline for the city – partially collapsed without warning. The incident severed critical utility lines, leaving parts of the city without hot water for several hours and triggering widespread transport disruption.

These events, though rare, reveal how vulnerable infrastructure can become when ageing structures are left unchecked, and how devastating the consequences can be. ECSTATIC aims to help authorities act before warning signs become disasters, by giving them better data, earlier, and without the need to install costly or disruptive new sensor systems.

With more than five billion kilometers of optical fiber installed across the globe, the potential for ECSTATIC’s technology is enormous, say its partners. If the trials in the UK prove successful, the approach could be rolled out across Europe’s transport and energy networks, enabling safer, smarter infrastructure monitoring at a fraction of the cost of traditional systems.

The project runs until July 2028. It brings together 13 partners from across Europe, including universities in Padova, L’Aquila, Chalmers, Alcalá, and West Attica, alongside industry groups Telecom Italia Sparkle, OTE Group, Nokia, Network Rail, MODUS, and Swiss SME Enlightra SARL, as well as the Greek seismology specialists NOA.

Dates for Photonics Partnership Annual Meeting 2026 announced
Photonics21, the European photonics industry platform, has announced that the Photonics Partnership Annual Meeting 2026 will take place will at the DoubleTree by Hilton Brussels City hotel on 9 & 10 June 2025. Next year’s event will focus on photonics in the next EU Framework Programme and will present the new Photonics Strategic Research and Innovation Agenda (2026) to the European Commission.

Photonics21 invites the industry in Europe to “take the opportunity to get the latest updates on the next EU Framework Programme and to network with your peers from the European photonics community.” The draft event programme as well as the link to the online registration and any further information will be published on the photonics21 website within the next months.

Source: optics.org

相關推薦
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    查看翻譯
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    查看翻譯
  • Marvel Fusion announces completion of € 50 million B+round funding

    On March 28th, Marvel Fusion, a laser fusion company from Munich, Germany, announced the completion of a B+round financing of 50 million euros, bringing the total amount of this round of financing to 113 million euros. It is reported that the company's cumulative financing has reached 385 million euros, making it the largest fusion company in Europe in terms of financing scale. This capital incr...

    03-31
    查看翻譯
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    查看翻譯
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    查看翻譯