繁体中文

Fraunhofer IZM launches quantum cascade project to develop modular laser system

412
2025-07-30 11:17:54
查看翻譯

Creating new laser systems for use in spectroscopy applications is a challenging and costly endeavor. In order to give even small and medium-sized enterprises access to such innovative technology, the Fraunhofer Institute for Reliability and Microintegration (IZM) co-launched the QuantumCascade project to develop a modular laser system for a range of multispectral analytics.
This week the IZM reported on the project, which ran from 2022-2025. IZM stated, “Infrared spectroscopy has many uses in a vast range of applications, from geosciences to medical technology or even waste management and recycling. Spectroscopic analytics have become far more precise over the last two decades, and far more complex over the same period.

 



Demonstration unit created in the QuantumCascade project


“Current devices use light at different wavelengths for a range of multispectral tests, but they have become bulky and stationary. Putting their capabilities into the original handheld form factor would allow sophisticated analytics out in the field, but designing and miniaturizing the technology to do this is a resource and know-how-intensive feat,” the statement added.

‘Versatile and reliable source for spectroscopy’

This is where the QuantumCascade project enters the picture. Successful development of a modular and powerful laser system, integrated on a glass board, would bring down the R&D effort needed to develop innovative devices and give makers access to a versatile and reliable light source for spectroscopy.

Quantum cascade lasers (QCLs) operate at wavelengths between 2 µm and 15 µm, in the medium infrared (MIR) range. QuantumCascade combines up to three QCLs that can be programmed to emit pulses as short as 5 ns, which are particularly crucial for spectroscopic analytics with organic substances.

Alongside the lasers themselves, the design includes embedded laser drivers that were developed in partnership with Laser Electronics LE GmbH, and integrated optical beamforming using aspherical optics and coupling to special MIR fibers. The novel design places each QCL inside its own cavity in the glass. The temperature in each can be stabilized separately, which means that the lasers can be operated each at the right temperature and, by implication, the right wavelength.

The electronic drivers and control circuits in the design are mounted by industrial soldering processes on a thin-film metallized glass board. Selective laser etching is used to structure this glass board with µm accuracy – so that optical components can be mounted directly. The solution is highly integrated, which makes it possible to encapsulate the entire system – for operation in harsh environments or to get cleaned for use in medical applications.

When working on the laser system, the researchers could draw on the insights won in the prior PhotMan project’s work on a versatile fiber-optical sensor system. QuantumCascade is the next step in the evolution of a thin-glass platform developed at IZM that integrates and couples optical and electronic components efficiently.

Source: optics.org

相關推薦
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    查看翻譯
  • The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

    The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been...

    2023-10-28
    查看翻譯
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    查看翻譯
  • Single photon avalanche diode detector enables 3D quantum ghost imaging

    A team of researchers at the Fraunhofer Institute for Optoelectronics, Systems Technology and Image Development and Karlsruhe Institute of Technology are using single-photon avalanche diode (SPAD) arrays to achieve three-dimensional (3D) quantum ghost imaging.The new method, called "asynchronous detection," produces the lowest photon dose of any measurement and can be used to image light-sensitive...

    2023-09-06
    查看翻譯
  • Mei Xin Sheng: The development of high-precision polarized light crown products has been completed

    On September 5, when Mei Xin Sheng held an analyst meeting, it said that the company has launched a fully integrated ultra-low power optical proximity detection sensor and a three-in-one ambient light and proximity detection sensor with ultra-high sensitivity, which have entered mass production.The research and development of high-precision polarized light crown products has been completed, the fe...

    2023-09-05
    查看翻譯