繁体中文

The method of reducing the linewidth of laser beam by more than 10000 times

716
2025-07-28 12:00:37
查看翻譯

A project at Macquarie University has demonstrated a way to narrow the linewidth of a laser beam by a factor of over ten thousand.
Published in APL Photonics, the technique offers a promising route toward ultra-narrow linewidth lasers for potential use in a wide range of pump-pulse systems.

Laser linewidth measures how precisely a beam of light maintains its frequency and color purity, and narrow-linewidth lasers are increasingly valuable in applications such as precision sensing, spectroscopy, and quantum science.

 



Dampers at work: laser linewidth


But for these uses, control of the laser parameters is crucial. Existing ways of reducing the quantum noise properties of an input pulse include the use of Brillouin lasers, which force an interaction between the laser pulse and the vibrational excited states termed phonons. But this "phonon dephasing" can require relatively long timescales to achieve its noise reductions.

The team at Macquarie's Photonics Research Centre employed a different approach, and used stimulated Raman scattering.

"One current method to narrow laser linewidth uses Brillouin lasers, where sound waves interact with light; but the effect is relatively weak, typically narrowing by only tens to hundreds of times," commented Richard Mildren from the MQ Photonics Research Center.

"Our technique uses stimulated Raman scattering, where the laser stimulates much higher frequency vibrations in the material, and is thousands of times more effective at narrowing linewidth."

Diamond vibrations

Theory says that a Raman laser can have a dramatic damping effect, based around a complex three-wave interaction that counters inherent phase fluctuations in the laser spectrum.

The Macquarie team tested this principle using diamond crystals, which have exceptional thermal properties and provide a stable testing environment. In this architecture the Raman damping transfers the laser's random phase fluctuations into the diamond crystal as vibrations, where they are absorbed and dissipated in a few trillionths of a second.

Using a diamond crystal measuring a few millimeters across in a carefully designed cavity, the project tested this theory with a deliberately noisy input beam with linewidth exceeding 10 MHz. Results showed that the Raman scattering technique narrowed the output laser beam to the 1 kHz limit of their detection system, representing a reduction factor of more than 10,000, with further narrowing possible.

"Our computer modeling suggests we could narrow laser linewidth by more than 10 million times using variations of the current design," noted Macquarie's David Spence.

Improved spectral purity could enhance atomic clocks and gravitational wave detectors, as well as assisting the precise laser control needed in quantum computers, where phase noise inevitably introduces errors in the computations.

"We are essentially proposing a new technique for purifying the spectrum of lasers that can be applied to many different types of input lasers," commented Richard Mildren.

Source: optics.org

相關推薦
  • Efficient implementation of laser welding automation using modern measurement technology

    Ensuring the integrity and quality of the welded hair clip is crucial in the assembly of electric motors. Usually, 160 to 220 hair clips are welded to each motor, and the accuracy of these welds directly affects the overall quality of the stator and motor. The traditional method of detecting these welds is difficult to balance the requirements of safety and accuracy, which often leads to damage to...

    2024-06-13
    查看翻譯
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    查看翻譯
  • UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

    According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 t...

    2023-10-09
    查看翻譯
  • Ruifeng high power ultraviolet laser will become an indispensable tool in the production of thin film solar cells in the future

    With the rise of clean energy and the enhancement of environmental awareness, thin film solar cells are gradually replacing traditional silicon-based solar cells as an efficient energy conversion device.However, to achieve efficient solar cell conversion rates, the key is to ensure that thin film solar cells have clear edges and maximize light absorption. In this regard, the unique advantages of h...

    2023-09-08
    查看翻譯
  • Using laser controlled filaments in vanadium dioxide to enhance neural morphology calculations

    In a new "Progress in Science" study, scientists from the University of Science and Technology of China have developed a dynamic network structure for neural morphology calculations using laser controlled conductive wires.Neuromorphic computing is an emerging research field that draws inspiration from the human brain to create efficient and intelligent computer systems. The core of neuromorphic co...

    2023-10-13
    查看翻譯