简体中文

Measuring invisible light through an electro-optic cavity

236
2025-02-19 14:46:40
查看翻译

Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "Light: Science and Applications".

The research team comes from the Department of Physical Chemistry at the Fritz Haber Institute of the Max Planck Society and the Radiation Physics Institute at the Helmholtz Dresden Rosendorf Research Center. By developing a tunable hybrid cavity design and measuring and modeling its complex set of allowed modes, physicists can accurately switch the nodes and maximum values of light waves at the target location. This study opens up new avenues for exploring ultrafast control of quantum electrodynamics and material properties.

 


Experimental principle of electro-optic cavity (EOC)


In this study, which has made significant progress in the field of cavity electrodynamics, the team proposed a new method for measuring the electric field inside the cavity. By utilizing an electro-optic Fabry Perot resonant cavity, they have achieved sub periodic time scale measurements that can obtain key information at precise locations where light matter interactions occur.

The study of cavity electrodynamics investigates how materials between mirrors interact with light and alter their properties and dynamic behavior. This study focuses on the terahertz spectral range, where low-energy excitation determines the fundamental properties of materials. Measuring new states with both light and material excitation properties inside the cavity will provide clearer understanding of such interactions.

The researchers also developed a hybrid cavity design that integrates adjustable air gaps and beam splitting detector crystals inside the cavity. This innovative design achieves precise control of internal reflection and can generate selective interference patterns as needed. Mathematical models support these observational results, providing key insights for decoding complex cavity dispersion and deepening our understanding of fundamental physical mechanisms.

This study lays the foundation for future research on cavity light matter interactions and has potential applications in fields such as quantum computing and materials science. The first author of the paper, Michael S. Spencer, stated, "Our work opens up new possibilities for exploring and regulating the fundamental interactions between light and matter, providing a unique toolkit for future scientific discoveries." The research team leader, Professor Sebastian Maehrlein, summarized, "Our electro-optic cavity provides a high-precision field resolved perspective, opening up new paths for experimental and theoretical cavity quantum electrodynamics research.

Source: opticsky

相关推荐
  • The wide application of TORNOS mind machine in diversified industrial fields

    TORNOS walking machine, also known as walking CNC lathe or spindle box mobile CNC automatic lathe, occupies an important position in the field of precision manufacturing due to its excellent performance and wide application areas. This machine tool not only integrates mechanical and electrical technologies, but also becomes an indispensable processing equipment in many industrial fields due to its...

    2024-07-24
    查看翻译
  • The Indian medical laser market has entered a rapid growth mode

    According to industry forecasts, the medical laser market in India, especially in the field of medical aesthetics, is expected to be worth up to 71572 million rupees in fiscal year 2023. It is expected that this number will increase to 1.8358 billion rupees by fiscal year 2031, with a compound annual growth rate of 12.49%.Alma Medical, a global innovator in the field of medical lasers in Israel, h...

    2024-07-05
    查看翻译
  • Petrobras will use laser beams to measure wind speed and direction

    Petrobras announced last week that it plans to use laser beams to measure wind speed and direction. The idea is that these data will be used to improve the operation of the wind turbines maintained by this state-owned company in North Rio Grande do.The total investment of the 2.0 version of this device reaches R $11.3 million, known as the offshore wind assessment remote buoy.This technology can a...

    2023-10-24
    查看翻译
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    查看翻译
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    查看翻译