简体中文

Toronto research has discovered 21 new sources of organic solid-state lasers

215
2024-05-22 14:15:17
查看翻译

Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new OSL materials have been tested in the past few decades.

Now, researchers from the university's acceleration alliance have accepted this challenge and used Autonomous Driving Laboratory (SDL) technology. Once established, they can synthesize and test over 1000 potential OSL materials and discover at least 21 OSL gain candidate materials within a few months.

SDL uses artificial intelligence and robot synthesis to simplify the process of identifying new materials. In this case, the new materials exhibit excellent laser properties. The Toronto team stated that so far, SDL is typically limited to one physics laboratory in one geographical location.

This work was described in a paper titled "Discovery of delocalized asynchronous closed-loop of organic laser emitters" in the journal Science. In this study, laboratories from Toronto and Vancouver, Canada, Glasgow, Scotland, Illinois, USA, and Fukuoka, Japan were all involved.

Each laboratory can contribute its professional knowledge and resources. This decentralized workflow is managed by a cloud based platform, which not only improves efficiency but also allows for rapid replication of experimental results, ultimately democratizing the discovery process and accelerating the development of next-generation laser technology.

"This paper demonstrates that closed-loop methods can be delocalized, and researchers can accelerate the discovery of materials in the early stages of commercialization from molecular states to devices," said Dr. Al á n Aspuru Guzik, Director of the Acceleration Alliance.
"The team designed an experiment from molecules to devices, with the final equipment manufactured in Japan. They were scaled up in Vancouver and then transferred to Japan for characterization," he said.

The discovery of these new materials represents a significant advancement in the field of molecular optoelectronics. It paves the way for the performance and functional enhancement of OSL devices, and sets a precedent for future delocalized discovery activities in the fields of materials science and autonomous driving laboratories.

Toptica launches FemtoFiber ultra series lasers
Laser developer Toptica has launched the FemtoFiber Ultra series, the company's "next-generation femtosecond fiber laser" designed specifically for multiphoton microscopy, two-photon lithography, and semiconductor detection.

With over 20 years of experience in developing OEM grade fiber lasers, Toptica has created a turnkey, fully integrated, and optimized laser system that provides excellent performance and reliability for the most demanding scientific and industrial applications in the biotechnology and semiconductor industries.

The FemtoFiber ultra series offers unparalleled accuracy and consistency, delivering high average power, excellent temporal and spatial beam quality, and femtosecond pulses in a compact and sturdy package.

This industrial grade optical engine is designed to withstand the harsh conditions of advanced imaging and micro/nano processing, making it an ideal choice for high-end applications. Its seamless operation and low cost of ownership make it a multifunctional solution, enabling researchers and manufacturers to explore new fields of multiphoton microscopy and semiconductor detection.

Luisa Hofmann, Product Manager for Biophotonics and Materials at Toptica, commented, "We designed these lasers to meet the ever-changing needs of our customers, providing them with powerful tools to deliver consistent results while minimizing downtime and costs, with output wavelengths of 780, 920, and 1050 nm.".

Source: Laser Net

相关推荐
  • Enhanced laser heterodyne spectroscopy contributes to the measurement of atmospheric greenhouse gases

    The research team led by Professor Gao Xiaoming of the Chinese Academy of Sciences Hefei Institute of Physical Sciences has improved the measurement accuracy of atmospheric greenhouse gases by using erbium-doped fiber amplifier assisted laser heterodyne radiometer.The study was published in the Journal of Optics and was selected as an editor's selection.LHR is renowned for its high sensitivity and...

    2023-10-25
    查看翻译
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    查看翻译
  • Thales will provide laser payloads for Hellas Sat 5

    Hellas Sat, which holds a majority stake in Arabsat, has reached a memorandum of understanding with Thales Alenia Space to collaborate on the development of a luminous communication payload for an upcoming new mission that will be launched on the future Hellas Sat 5 telecommunications satellite, which will operate at 39 degrees east longitude.The partnership between Hellas Sat and Thales Alenia Sp...

    2024-01-30
    查看翻译
  • The Ruefeng 30w picosecond laser brings unprecedented possibilities in the art of cutting resin eye lenses

    Ruifeng Picosecond laser: Open the door to the art of cutting resin eye lensesAs an important innovation in the modern eyewear industry, resin lenses bring us visual clarity and comfort with their lightness, transparency and impact resistance.However, with the continuous improvement of people's demand for quality and personalization, how to achieve accurate and beautiful cutting on resin eye lense...

    2023-09-14
    查看翻译
  • Professor Hu Yanlei from the University of Science and Technology of China, Nat Commun Preparation of Durable Janus Thin Films with Mode Switching by Femtosecond Laser

    Janus film is widely used in fields such as oil-water separation, water mist collection, and wearable patches due to its unique transmembrane directional water transport function. The function of traditional Janus thin films comes from the thickness direction of microchannels and single-sided chemical coating modifications (single-sided hydrophilic and hydrophobic modification of hydrophobic and h...

    2024-02-22
    查看翻译