简体中文

Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

905
2024-04-22 16:17:22
查看翻译

Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology under the title of "Femtosecond fiber laser mode locked by a twisted Sagnac interferometer".

Fiber optic Sagnac interferometers have been widely used in fields such as navigation, sensing, and lasers. The common path structure of Sagnac interferometer has both advantages and disadvantages. One is that precise length control is not required between optical paths, which is crucial for robust interferometric measurements. The second issue is that the transmittance of the Sagnac fiber loop is fixed and cannot be freely tuned. 
Therefore, traditional nine cavity mode-locked fiber lasers based on Sagnac fiber interference loops face the problem of inflexible mode locking.

In this study, researchers proposed a twisted Sagnac interferometer with continuously adjustable phase bias. By introducing 90 ° fusion in the Sagnac loop and utilizing the birefringence of polarization maintaining fibers, linear phase shift differences in clockwise and counterclockwise directions can be introduced and adjusted. When applied in a nine cavity fiber laser system, setting an appropriate transmittance can achieve mode locking self start. The experimental results show that by stretching the fiber to change the linear phase shift difference, the laser can achieve switching between different operating modes. By optimizing the phase shift difference, laser pulses with a spectral bandwidth of 31nm and a pulse duration of 160 fs can be generated at a repetition frequency of 24.5 MHz.

This study achieved real-time continuous adjustment of the transmittance of Sagnac fiber optic interference ring, providing greater flexibility and control for the nine cavity mode-locked laser, and improving its application prospects in optical metrology and sensing fields.
This work was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Shanghai Natural Science Foundation.

Figure 1 Schematic diagram of a twisted fiber Sagnac interferometer.

Figure 2: Experimental setup diagram of femtosecond fiber laser based on twisted fiber Sagnac interferometer mode locking.

Figure 3 Spectral tuning and time-domain characteristics under different clockwise and counterclockwise linear phase shift differences and nonlinear phase shift differences.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

相关推荐
  • The world's most powerful laser attempts to unravel the secrets of the universe

    They are the strongest lasers in history, and their beams are helping scientists explore the structure of the universe.In a research laboratory at the University of Michigan, bright green light fills the vacuum chamber of a technology giant. It is the size of two tennis courts. The walls are shielded with 60 centimeters of concrete to prevent radiation leakage, and workers wear masks and hairnets ...

    2023-11-28
    查看翻译
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    查看翻译
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    查看翻译
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    查看翻译
  • TSMC's first European wafer fab receives € 5 billion subsidy for construction

    Recently, TSMC held a groundbreaking ceremony for its first European 12 inch wafer fab. It is reported that the European Union has approved Germany to provide 5 billion euros in subsidies for the factory.It is understood that TSMC's 12 inch wafer fab is located in Dresden, Germany and is called "European Semiconductor Manufacturing Company (ESMC)". In August 2023, TSMC announced a partnership with...

    2024-08-26
    查看翻译