简体中文

This innovation will significantly improve the sensitivity of gravitational wave detectors

224
2024-04-17 16:23:40
查看翻译

In 2017, the detection of gravitational waves generated by the merger of binary neutron stars marked a significant breakthrough in physics. These waves reveal important information about the universe, from the origin of short gamma ray bursts to the formation of heavy elements.

However, capturing gravitational waves from the merged residue remains a challenge as these waves avoid the detection range of the current detector. However, they can illuminate the internal structure of neutron stars.

The solution may lie in amplifying signals through optical springs and simulating spring behavior using the radiation pressure of light. The Tokyo Institute of Technology's Japan research group, led by associate professors Kentaro Somiya and Dr. Sotatsu Otabe, has proposed an innovation: Kerr effect enhanced optical springs.

In order to make the system more sensitive without requiring more energy, researchers used special techniques in optical equipment. They introduced a material called Kerr medium. This material has a unique characteristic of changing the refractive index of light.

Due to this feature, the device can act as a harder optical spring, thereby enhancing its ability to respond to very subtle changes (such as those caused by gravitational waves) without consuming more energy. Tests have shown that this method increases the hardness of lightweight springs by 1.6 times, enabling the device to detect changes at higher frequencies (from 53 Hz to 67 Hz).

This progress paves the way for the next generation of gravitational wave detectors, which can detect elusive waves to date and provide us with an additional key to understanding the composition of the universe. The proposed design is easy to implement and introduces adjustable parameters into the optomechanical system.

Source: Laser Net

相关推荐
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    查看翻译
  • Aerotech launches new micro hexapod sports platform

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the HexGen HEX150-125HL miniature hexapod motion platform, a six degree of freedom (DOF) precision positioning system. This compact and cost-effective hexapod sports platform has a base diameter of 150 millimeters and a nominal height of 125 millimeters. It can achieve a minimum incremental movement of up...

    01-14
    查看翻译
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    查看翻译
  • WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

    The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including...

    2023-10-10
    查看翻译
  • TSMC's first European wafer fab receives € 5 billion subsidy for construction

    Recently, TSMC held a groundbreaking ceremony for its first European 12 inch wafer fab. It is reported that the European Union has approved Germany to provide 5 billion euros in subsidies for the factory.It is understood that TSMC's 12 inch wafer fab is located in Dresden, Germany and is called "European Semiconductor Manufacturing Company (ESMC)". In August 2023, TSMC announced a partnership with...

    2024-08-26
    查看翻译