简体中文

Observation of nanoscale behavior of light driven polymers using combination microscopy technology

440
2024-03-12 14:02:46
查看翻译

Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.

In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical microscopy to create films as polymer films changed.

Azo polymers are photoactive materials, which means they undergo changes when light shines on them. Specifically, light can alter their chemical structure, thereby altering the surface of thin films. This makes them very interested in applications such as optical data storage and providing light triggered motion.

The ability to use focused laser to initiate these changes during image capture is called in situ measurement.
"Usually, changes in polymer films are studied by processing them, such as by irradiating them with light and then measuring or observing them. However, the information provided is limited," explained Keishi Yang, the main author of the study. "The use of HS-AFM devices, including inverted optical microscopes with lasers, allows us to trigger changes in azo polymer films while observing them in real-time with high spatiotemporal resolution."

HS-AFM measurement can track the dynamic changes on the surface of polymer films in movies at a speed of two frames per second. It was also found that the direction of polarized light used has an impact on the final surface pattern.

Further research using in-situ methods is expected to thoroughly understand the mechanism of photo driven azo polymer deformation, thereby maximizing the potential of these materials.

"We have demonstrated our technique for observing polymer membrane deformation," said Takayuki Umakoshi, senior author of the study. However, in doing so, we have demonstrated the potential to combine cutting-edge scanning HS-AFM with laser sources for materials science and physical chemistry.

Materials and processes that respond to light are important in a wide range of fields in chemistry and biology, including sensing, imaging, and nanomedicine. In situ technology provides an opportunity to deepen understanding and maximize potential, and therefore has the potential to be applied to various optical devices.

Source: Laser Net

相关推荐
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    查看翻译
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    查看翻译
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    查看翻译
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    查看翻译
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    查看翻译