简体中文

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

850
2024-02-21 14:17:01
查看翻译

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.

This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/waveguide quantum electrodynamics research.

One of the most stunning and unexpected phenomena in quantum optics is superradiance. It can be understood by imaging atoms as tiny antennas that emit electromagnetic radiation or light under appropriate conditions.

On the other hand, if these atoms are very close to each other, the atomic antennas will begin to communicate with each other and thus synchronize. This leads to light emission, whose intensity increases with the square of the number of atoms.

Recently, Farokh Mivehvar studied two sets of atoms, N1 and N2, where theoretically each atom has many atoms within a quantum cavity. This study was published in the journal Physical Review Letters. The atoms in each cluster are very close to each other and can produce superradiance.

Firstly, two huge antennas create a super giant antenna that can emit more superradiance. On the other hand, in the second method, due to the destructive competition between two large antennas, superradiance light emission is suppressed.

Especially, when the number of atoms in two ensembles is equal, superradiance light emission is suppressed.
Farokh Mivehvar said, "In addition, we also found that two giant antennas emit light, which is a combination of the two types mentioned earlier and has oscillation characteristics.".

In cutting-edge cavity/waveguide quantum electrodynamics experiments, the model and its predictions can be achieved and observed. The latest generation of so-called superradiance lasers may also find applications in the discovery.

Source: Laser Net

相关推荐
  • Laser fusion breakthrough brings greater energy explosion

    Recently, scientists from the National Ignition Facility at Lawrence Livermore National Laboratory in California produced a burst of energy by bombarding hydrogen pellets with 192 laser beams, briefly reproducing the fusion process that powers the sun. This is a repeat of an experiment in December last year, but this time the scientists generated more energy, with a gain almost double that of the ...

    2023-09-26
    查看翻译
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    查看翻译
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    查看翻译
  • Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

    Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.This technology is developed in response to biophoton sensing technology, mainly utilizing ...

    2023-08-22
    查看翻译
  • Laser&Photonics Reviews New Type Quartz Crystal Space Harmonic Modulation for Efficient Vacuum UV Laser

    Professor Zhang Huaijin and Yu Haohai from the Institute of Crystal Materials of Shandong University (the State Key Laboratory of Crystal Materials) proposed a spatial harmonic modulation strategy, which realizes the phase matching conditions that can be manipulated artificially in the new quartz crystal, and realizes the effective frequency doubling within the VUV range. The relevant research is ...

    2023-08-30
    查看翻译