简体中文

Beijing Institute of Technology has made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals

679
2024-02-21 14:08:27
查看翻译

Recently, teachers and students from the Institute of Solid State Laser and Ultrafast Photonics at the School of Physics and Optoelectronic Engineering have made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals. The related research results are titled "Anisotropic carrier dynamics and laser fabricated luminosity patterns on oriented single crystal perovskite wafers" and published online in the international authoritative journal Nature Communications, The research results are of great significance for promoting the practical application process of functional crystals in the field of optoelectronics.

The first author of the paper is Beijing University of Technology, with Ge Chao, an assistant researcher at the School of Physics and Optoelectronic Engineering, and Li Yachao, a doctoral student, as co first authors. Ge Chao, an assistant researcher at Beijing University of Technology, and Song Haiying, an associate researcher, are co corresponding authors. Professor Zhang Wenkai from Beijing Normal University and Professor Liu Yang from Shandong University are also co corresponding authors. This study has been supported by projects such as the National Natural Science Foundation of China and the Beijing Municipal Education Commission Research Program.

In recent years, perovskite materials and their applications in the field of optoelectronics have attracted widespread attention. However, a deep understanding of their anisotropic behavior in ultrafast carrier dynamics is still insufficient. To compensate for this deficiency, the research team, based on high-quality MAPbBr3 single crystal wafers with different orientations, for the first time revealed the polarization of photo excited charge carriers within crystal planes with different orientations and the anisotropic dynamic evolution between crystal planes at the picosecond time scale. This discovery provides a deeper understanding of the relaxation pathways of ultrafast charge carriers from a crystallographic perspective, which is of great significance for exploring and expanding the applications of perovskite single crystals in the field of ultrafast optoelectronics, such as light modulators, high-speed polarization sensors, and ballistic transistors.

In addition, by using femtosecond laser two-photon processing technology, the research team successfully prepared three orders of magnitude fluorescence enhanced luminescent patterns. An in-depth analysis of the fluorescence enhancement mechanism from the perspectives of multidimensional space (bulk and micro/nanoscale) and time (steady-state and transient) provides a convenient top-down strategy for improving the photoluminescence intensity of bulk crystals. This study provides a profound understanding of the ultrafast carrier dynamics of MAPbBr3 from a crystallographic perspective, with the hope of providing more guidance for the orientation selection and utilization of perovskite hot carriers in optoelectronics in the future.

The dynamic evolution of photo excited charge carriers on the (100), (110), and (111) crystal planes of MAPbBr3 and the mechanism of femtosecond laser-induced fluorescence enhancement.

Source: OFweek

相关推荐
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    查看翻译
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    查看翻译
  • Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

    Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.This financing is led by the US Innovation Technology Fund (USIT) and involves hea...

    2024-07-18
    查看翻译
  • Efficient implementation of laser welding automation using modern measurement technology

    Ensuring the integrity and quality of the welded hair clip is crucial in the assembly of electric motors. Usually, 160 to 220 hair clips are welded to each motor, and the accuracy of these welds directly affects the overall quality of the stator and motor. The traditional method of detecting these welds is difficult to balance the requirements of safety and accuracy, which often leads to damage to...

    2024-06-13
    查看翻译
  • Lingke LP series industrial connectors provide fast, reliable, and efficient electrical connections for laser equipment

    Laser technology is currently a very mature technology and has been used on various laser equipment, such as laser cutting machines, laser projectors, medical laser equipment, etc. Advanced laser equipment requires high-performance and reliable industrial connectors to provide stable and safe power input and connection, which is one of the key links for the normal operation of laser equipment.Ling...

    2023-10-25
    查看翻译