简体中文

Scientists demonstrate powerful UV-visible infrared full-spectrum laser

516
2023-08-25 14:29:07
查看翻译
Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.
b. The bright white light circular spots emitted by the CPPLN sample.
c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.
d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM effects.
Source: Lihong Hong, Liqiang Liu, Yuanyuan Liu, Junyu Qian, Renyu Feng, Wenkai Li, Yanyan Li, Yujie Peng, Yuxin Leng, Ruxin Li, and Zhi-Yuan Li

High brightness ultra-wideband ultra-continuous white light laser has attracted more and more attention in physics, chemistry, biology, material science and other scientific and technological fields. Over the past few decades, many different methods have been developed to produce supercontinuous white lasers.

Most of them utilize a variety of third-order nonlinear effects, such as self-phase modulation (SPM) occurring in microstructured photonic crystal fibers or homogeneous plates, or noble gas-filled hollow fibers. However, the quality of these supercontinuum light sources is subject to some limitations, such as the small pulse energy at the nanojoule level, and the requirements of complex dispersion engineering.

Another more efficient means of expanding the laser spectral range is through the various second-order nonlinear effects (2nd-NL) of the quasi-phase matching (QPM) scheme. However, the spectrum and power scaling performance of these pure 2N-NL schemes are still poor due to the narrow pump band width, limited QPM operating bandwidth, and reduced efficiency of high order harmonic energy conversion.

How to solve these bad limitations in the 2nd-NL and 3rd-NL systems and make both to produce full-spectrum supercontinuum lasers with spectral coverage from ultraviolet to mid-infrared has become a great challenge.

In a new paper published in Light: Science & Applications: A team led by Professor Zhi-Yuan Li and colleagues from the School of Physics and Optoelectronics at South China University of Technology in China has demonstrated an intense, quadruple-frequency UV-Vis-IR full-spectrum laser source (300 nm to 5000 nm, peak value -25 dB) with an energy of 0.54 mJ per pulse. Aerated hollow core fiber (HCF) from a cascade structure, exposed lithium niobate (LN) crystal plates, specially designed chirped periodically polarized lithium niobate crystals (CPPLN) pumped by a 3.9 mm, 3.3 mJ mid-infrared pump pulse.

Pumped by a 3.3mJ 3.9μm mid-infrared femtosecond pulse laser, the HCF-LN system can generate a strong mid-infrared laser pulse of double bandwidth as a secondary FW pump input to CPPLN, which supports efficient broadband HHG processing, further extending the spectral bandwidth to UV-Vis-IR. It is clear that this cascade structure creatively satisfies two prerequisites for the generation of full-spectrum white light: Condition 1, a strongly frequency-doubled pump femtosecond laser, and condition 2, a nonlinear crystal with an extremely high frequency up-conversion bandwidth. In addition, the system involves a large number of synergies between 2nd-NL and 3rd-NL effects.

The synergistic mechanism they have developed provides superior capabilities for constructing UV-Vis-IR global supercontinuum spectra and filling spectral gaps between various HHGS, far exceeding what has been achieved with single-acting 2N-NL or 3rd-NL effects previously employed.

As a result, this cascaded HFC-LN-CPPLN optical module enables previously unachievable levels of strong full-spectrum laser output, not only with great bandwidth (spanning four octave multiplicities), but also with a spectral profile of high flatness (from 300 to 5000 nm, flatness better than 25 dB) and large pulse energy (0.54 mJ per pulse).

"We believe that our proposal is to use the synergy of 2NL-HHG and 3rd-NL SPM effects to create an intense four-octave UV-vision-infrared full-spectrum femtosecond laser source, which is a big step toward building supercontinuous spectral white laser sources with greater bandwidth, energy, higher spectral brightness, and flatter spectral profiles." "This intense full-spectrum femtosecond laser will provide a revolutionary tool for spectroscopy and find potential applications in physics, chemistry, biology, materials science, information technology, industrial processing and environmental monitoring," the scientists said.

Source: Chinese Optical Journal Network
相关推荐
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    查看翻译
  • Integra Optics launches groundbreaking XGS-PON and GPON combined OLT SFP+optical transceivers

    Infinite Electronics brand and innovative operator level global supplier of fiber optic components, Integra Optics, announced the launch of its latest innovative product, the XGS-PON and GPON combination OLT SFP+BiDi optical transceiver module. This module integrates the passive optical network OLT and GPON OLT optical modules of XG (S), promoting seamless network rate deployment within the optica...

    2024-04-11
    查看翻译
  • Lumiotive Launches New LiDAR Sensor LM10

    Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in term...

    2023-09-02
    查看翻译
  • Changchun Institute of Optics and Fine Mechanics has developed a high brightness HiBBEE non-uniform waveguide semiconductor laser

    High brightness semiconductor lasers have extremely important applications in fields such as laser radar. Traditional semiconductor lasers face challenges such as large vertical divergence angle, elliptical beam output, multiple lateral modes, and poor beam quality, which limit the direct application of high brightness semiconductor lasers.In response to this challenge, the team from the Bimberg S...

    03-18
    查看翻译
  • The new Casiris H6 4K UST tricolor laser projector is about to be launched through Indiegogo

    Casir is about to launch the H6 4K UST tricolor laser projector through Indiegogo. The new laser projector has a brightness of up to 3000 ANSI lumens and a BT.2020 color gamut coverage of 110%. It is an ultra short focus projector that runs on Android TV.The Casiris H6 4K UST tricolor laser projector is a brighter and more accurate version of the Casiris A6. It also has greater image projection ca...

    2023-09-18
    查看翻译