简体中文

Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

239
2024-02-19 15:31:14
查看翻译

A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.

Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use and scalability. The femtosecond laser based technology currently used for printing complex 2D and 3D structures is slow and expensive, and often unaffordable for small and medium-sized batch manufacturing applications. These high-intensity femtosecond lasers can overcome optical diffraction limits, but they are costly. The current technology is still limited by the slow sequential printer system. An alternative light based printing system is needed, which can eliminate expensive lasers while achieving precise and detailed nanoscale printing of polymers and metals.

The potential applications of cost-effective nanoprinting include nanoscale patterned metal films, which are important components in nanodevices and applications, such as electrical interconnections in high-density printed electronics, plasma based metamaterials for biosensing and optical modulation, and microelectromechanical systems.

The SLP system developed by Georgia Institute of Technology provides several advantages for nanoscale printing processes: lower cost, higher speed, and finer resolution. The light source is a type of super light-emitting diode, which is 100 times cheaper than the currently used lasers, thereby reducing the overall printing cost by 10-50 times. By utilizing the specific effects of superluminescent light projection, sharp edge images with minimal speckle patterns can be created, resulting in high-resolution images and structures on polymer and metal based films.

Moreover, by implementing a parallel writing mechanism, the system significantly improves throughput speed, which is 100 times faster than existing metal printing methods and 4 times faster than existing polymer printing methods. These advantages create an easily scalable system for various industrial needs and make nanoscale printing a viable resource for a larger manufacturing audience.

The proposed solution has several advantages. Firstly, it is cost-effective, utilizing existing SLEDs that are much cheaper than commonly used femtosecond lasers, thereby greatly reducing the cost of nanoscale printing. Secondly, due to its parallel writing system, it has higher speed and can achieve faster throughput, especially in metal printing. Compared with existing technologies, it is at least 100 times faster, and polymer printing is at least 4 times faster. Thirdly, unlike other nanoscale printing methods, it provides flexibility by adapting to polymer and metal printing. In addition, it also has scalability, lower lighting costs, higher printing speeds, and the potential for layer stacking to create 3D structures, making it suitable for different manufacturing environments. Finally, due to the use of high numerical aperture oil immersed lenses with superluminescent light, it provides excellent resolution, thereby enhancing oblique light capture and improving printing resolution.

The potential commercial applications of this solution are diverse and have broad prospects. They include micro optical devices for quantum devices, which can fundamentally change various fields by improving the performance of quantum technology. The application of plane optics and photonic quantum devices in photonics provides new avenues for advanced optical systems. In addition, this solution may help to produce printed structures for photoconductive chips, which are key components of technologies such as laser radar systems used in autonomous vehicle, thus contributing to the progress of autonomous vehicle. In addition, this technology can also be used to develop microfluidic chips and micro robots for biomedical and drug delivery applications, thereby achieving precise and efficient delivery mechanisms at the microscale. In addition, it has broad prospects in the field of printed electronics, helping to manufacture electronic components with complex designs and functions. Finally, printed batteries represent another potential application, providing customizable and compact power solutions for various devices and systems. Overall, the versatility of this solution has opened up numerous business opportunities for various industries.

Source: Laser Net

相关推荐
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    查看翻译
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    查看翻译
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    查看翻译
  • What are double- and triple-stack hybrid stepper motors

    Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between ...

    2023-09-16
    查看翻译
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    查看翻译