简体中文

Laser link between European Space Agency containers and space

927
2024-02-12 20:26:15
查看翻译

The latest expansion of the European Space Agency's laboratory is essentially portable: this European Space Agency's mobile optical ground station is housed in a standard container and can be transported throughout Europe as needed for laser based optical communication with satellites - including NASA's Psyche mission, in space millions of kilometers away.

The station has officially become a part of the Atomic Energy Agency's Optics and Optoelectronics Laboratory and will serve as a flexible testing platform for optical communication hardware and systems. ETOGS can also support other activities that require observing the sky with telescopes or pointing lasers at the sky, such as space debris monitoring or determining orbits through laser ranging.

ETOGS consists of a standard 6-meter long container that has been customized to accommodate telescopes with a diameter of 80 centimeters in the lifting platform and climate control operator area. Laser emitters, receivers, and other required equipment can be connected to this flexible structure to serve each specific activity. The station is hauled by trucks and can be deployed anywhere needed, powered by power accessories, diesel generators, or solar cell modules.

European Space Agency optoelectronic engineer Jorge Pires explained, "The creation of this station is indeed to meet the needs of the rapidly developing optical communication community for flexible testing platforms, rather than being deployable in representative ground environments. One of the most relevant issues in optical communication is to what extent the surrounding environment affects the quality of the link, such as background light in urban areas or atmospheric turbulence caused by weather.".

When it comes to receiving signals from quantum communication systems, this is most crucial because the amount of light involved is very low, and information is transmitted through a single photon. With this station, we can truly start answering these questions by operating at many different locations. By providing our partners with such ready-made testing platforms, we support hardware validation and iteration without the high development costs of using dedicated ground stations.

Optics and quantum technology are expected to completely change connections on a global scale. By using optical pulses with frequencies much higher than radio waves, optical communication can transmit more data at a given moment. Optical communication through optical fiber cable is the foundation of modern terrestrial Internet infrastructure, but the link with satellite still depends on low frequency and low bandwidth radio waves to a large extent.

By utilizing the quantum properties of light, systems such as quantum key distribution will help protect data to a level previously unimaginable; The physical properties of light particles protect the security of encryption key exchange, enabling message transmission to resist eavesdropping by malicious actors.

Jorge added, "The 80cm telescope at this station is the baseline size for quantum key distribution on a commercial scale, so we expect the station to be used to demonstrate and validate satellite based quantum communication.".

The first operational mission of this new European Space Agency asset will be to support the deep space optical communication demonstration of NASA's planned Psyche mission in 2025.

The European Space Agency is collaborating with a European consortium and the National Observatory of Athens to develop and deploy ETOGS at Kryoneri Observatory in Greece to accommodate multi beam ground laser emitters.

Source: Laser Net

相关推荐
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    查看翻译
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    查看翻译
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    查看翻译
  • How to choose between continuous and pulsed fiber lasers?

    Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous ...

    2023-12-20
    查看翻译
  • Shanghai Optics and Machinery Institute has made new progress in the research of high repetition frequency and high energy medium wave infrared lasers

    Recently, the research team of Aerospace Laser Technology and System Department of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, based on 2.1 μ M Ho: YAG main oscillator amplifier pumped ZGP crystal, achieving high energy 3-5 at kHz repetition frequency μ The output of M medium wave infrared laser and further research on beam quality improvement technology for high-...

    2024-05-22
    查看翻译