简体中文

Using Topological Photon Chips to Uncover the Secrets of Open Systems

489
2024-02-02 18:08:02
查看翻译

Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.

Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the surrounding environment.

However, if the energy gain and loss are distributed in an orderly manner, so that they cancel each other out in all possible situations, the dynamics of the system can also be stable. This can be ensured through a phenomenon called parity check time symmetry.

All components of the system are carefully arranged to exchange the gain and loss of light through simultaneous mirroring and time reversal, making the system appear unchanged, just like a video played backwards and simultaneously reflected in a mirror, but looking exactly the same as the original video, which means it is PT symmetric.

PT symmetry is not just an academic concept; On the contrary, it opens the door to a more thorough understanding of open systems.

Professor Alexander Szameit from Rostock University specializes in studying interesting physical phenomena related to PT symmetry. Laser can replicate the behavior of artificial and natural materials arranged in periodic lattice structures in their customized photonic chips, making them an excellent platform for testing various physical theories.

Therefore, Professor Szameit and his colleagues successfully integrated the ideas of topology and PT symmetry. Topology is the study of properties that remain unchanged even when the underlying system is constantly deformed. When a system possesses these qualities, it becomes particularly resistant to external influences.

Szameit's team used laser engraved photonic waveguides in their experiments, which are optical structures etched into materials by laser beams.

In these "optical circuits," so-called topological insulators are implemented.
So far, people believe that open systems and this powerful boundary state are fundamentally incompatible. Researchers from Rostock, Vilzburg, and Indianapolis have jointly demonstrated that it is possible to address the apparent paradox by dynamically allocating benefits and losses over time.

These findings may pave the way for the development of new cutting-edge circuits for transmitting sound, light, and even electricity. These findings also represent significant advances in the understanding of topological insulators and open systems.

This study was funded by the German Research Foundation and supported by the Alfred Krupp von Boren and the Halbach Foundation.

Source: Laser Net


相关推荐
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    查看翻译
  • DustPhotonic is the first to develop an 800G silicon photonic chip

    Recently, DustPhotonics released a single chip 800G-DR8 silicon photonic chip for data center applications, which is an important milestone in practical photonics in data centers. The company claims that its single-chip solution provides high-performance and easy to implement solutions for system architects.DustPhotonics' 800G-DR8 photonic integrated circuit provides a single chip solution for fib...

    2023-10-13
    查看翻译
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    查看翻译
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    查看翻译
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    查看翻译