简体中文

Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

186
2024-01-23 14:07:18
查看翻译

Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause noise and distortion in the original image, which may affect the quality of the final SR image.

Therefore, for SR microscope developers and users, having a reliable method to quantify reconstruction quality is crucial. Due to the improved distinguishability of SR imaging, it is necessary to conduct a thorough evaluation, but existing tools are often insufficient when the resolution of the authorities changes within the field of view.

In a recent study published in Light: Science and Applications, a group of scientists introduced a new method called rolling Fourier ring correlation. This method helps to directly represent resolution heterogeneity in the super-resolution domain, achieving unparalleled SR scale mapping and easily associating resolution mapping with SR content. In addition, the team also improved the resolution scaling error map to achieve more accurate system error estimation. This is combined with rFRC to create a combination technique called PANEL, which focuses on accurately locating low reliability areas from SR images.

Scientists have successfully applied PANEL to various imaging methods, including single molecule localization microscopy, super-resolution radial wave, structural illumination microscopy, and deconvolution methods, verifying the effectiveness and stability of its quantitative spectra. PANEL can be used to improve SR images. For example, it has been effectively used to fuse SMLM images reconstructed through various algorithms, providing high-quality SR images.

Source: Laser Net

相关推荐
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    查看翻译
  • The 20th Wuhan Optoelectronics Expo 2025 to Open Grandly

    From May 15 to 17, 2025, the 20th Wuhan Optoelectronics Expo will be held grandly at the China Optics Valley Convention and Exhibition Center in Wuhan. With the theme "Light Connects Everything, Intelligence Leads the Future," this year's expo will focus on six major fields: laser technology and applications, optics and precision optics, information communication and semiconductors, automotive opt...

    03-14
    查看翻译
  • AM Research has released its latest quarterly data and forecast report

    Recently, additive manufacturing research company AM Research released its latest quarterly data and forecast report, which deeply analyzes the latest developments in the global 3D printing market, covering multidimensional analysis of suppliers, printing technology, geographic location, and application areas.According to the report, the global 3D printing market once again demonstrates strong gro...

    2024-09-29
    查看翻译
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    查看翻译
  • Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

    Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improve...

    2023-09-18
    查看翻译