简体中文

Progress in the study of ultrafast electron dynamics using short light pulses

365
2024-01-08 14:53:56
查看翻译

When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and previously unattainable temporal resolution.

The relevant paper is titled "Time Resolved Photoemission Electron Microscope on a ZnO Surface Using an Extreme Ultraviolet Attention Pulse Pair" and published in Advanced Physics Research.

Through these experiments, the research team has demonstrated the applicability of this method, which can be used to better understand the electronic behavior of electrons in nanomaterials and new solar cells. Researchers from Lund University in Sweden, including Professor Anne L'Huillier, one of the three Nobel laureates in physics last year, also participated in this study.

Here, this work demonstrates the use of spatial and energy resolved photoelectrons to perform attosecond interferometric measurements on zinc oxide (ZnO) surfaces. The combination of optical emission electron microscopy and near-infrared pump extreme ultraviolet probe laser spectroscopy resolved the instantaneous phase of the infrared field with high spatial resolution. The research results indicate that zinc oxide nuclear energy with low binding energy is very suitable for spatially resolved attosecond interferometry measurement experiments. A significant phase shift of the attosecond beat frequency signal was observed across the entire laser focus, attributed to the wavefront difference between the surface pump field and the probe field.

Figure 1: Characterization of the experimental setup.

In the experiment, the research team combined a special electron microscope, a light emission electron microscope (PEEM), with attosecond physics techniques. Scientists use extremely short duration light pulses to excite electrons and record their subsequent behavior. This process is very similar to the process of capturing rapid motion with a flash in photography.

As reported by the research group, similar experiments have yet to achieve the time accuracy required to track electronic motion. The motion speed of these tiny elementary particles is much faster than that of larger and heavier atomic nuclei. However, in this study, scientists combined the highly demanding techniques of light emission electron microscopy and attosecond microscopy without affecting spatial or temporal resolution.

Figure 2: Spectral results of zinc oxide surface.
Vogelsang said, "Now we can finally use attosecond pulses to study in detail the interaction between light and matter at the atomic level and in nanostructures.".

One factor contributing to this progress is the use of a light source that can generate a large number of attosecond pulse flashes per second - in this case, this light source can generate 200000 light pulses per second. Each flash releases an average of one electron from the surface of the crystal, allowing researchers to study their behavior without affecting each other. The more pulses generated per second, the easier it is to extract small measurement signals from the dataset.

Figure 3: Spatial resolved attosecond interferometry measurement of zinc oxide surface.

The experiment of this study was conducted in Anne L'Huillier's laboratory at Lund University in Sweden, which is one of the few research laboratories in the world with the necessary technical equipment for such experiments.

A similar experimental laboratory is currently being established at the University of Oldenburg. In the future, the two teams plan to continue conducting research to explore the behavior of electrons in various materials and nanostructures.

This work provides a clear approach for high spatial resolution attosecond interferometry measurements in the field of atomic scale surfaces, and opens the way for a detailed understanding of the interaction between nanoscale light and matter.

Source: Sohu

相关推荐
  • TDK introduces a new gold-wire-bonded optional NTC thermistor for laser diode temperature measurement

    TDK Corporation (TSE: 6762) announced the introduction of the new NTCWS series of NTC thermistors with gold wire bonding. These bonding NTC thermistors can be installed in packages via gold wire bonding to enable high precision temperature detection of laser diodes (LD) for optical communication. The series will begin mass production in September 2023.The use of LD devices in optical communication...

    2023-09-08
    查看翻译
  • The emergence of laser engraving glass technology injects exquisite and vivid artistic quality into glass works

    The emergence of laser inner glass carving technology has brought new forms and possibilities of artistic expression to glass art. It not only showcases advanced technology and innovative craftsmanship, but also endows glass works with unique artistry.Firstly, laser engraved glass can achieve very fine and complex carving effects. By penetrating the interior of glass with a laser beam for carving,...

    2023-09-15
    查看翻译
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    查看翻译
  • Alcon acquires ophthalmic laser equipment company for $466 million

    On July 3rd local time, Swiss ophthalmic care giant Alcon announced the acquisition of Israeli medical technology company Belkin Vision and its laser equipment assets for treating glaucoma.The transaction includes a prepayment of $81 million, of which approximately $65 million is in cash. In addition, if Alcon can establish this technology as the preferred first-line treatment option for clinical ...

    2024-07-09
    查看翻译
  • A US research team has developed a new type of photonic memory computing device

    Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integ...

    2024-10-24
    查看翻译