简体中文

Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

803
2023-12-27 13:50:03
查看翻译

Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.
Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.

Innovation in mode-locked laser technology
To improve the technology that typically requires bulky desktop devices, Quishi Guo and his colleagues reduced the size of mode-locked lasers to optical chips with integrated nanophoton platforms. The research results show that it provides prospects for the development of ultrafast nanophotonic systems for widespread applications.

The potential of miniaturizing MLL
A mode-locked laser can generate coherent ultra short optical pulses at an extremely fast speed - approximately picoseconds and femtoseconds. These devices have achieved many technologies in the field of photonics, including extreme nonlinear optics, two-photon microscopy, and optical computing.

However, most MLLs are expensive, require high power consumption, and require bulky discrete optical components and equipment. Therefore, the use of ultrafast photon systems is usually limited to desktop laboratory experiments. More importantly, the so-called "integrated" MLL used to drive nanophotonic platforms has key limitations, such as low peak power and lack of controllability.

Breakthrough in Nanophoton MLL Integration
Guo et al. created an optical chip sized integrated MLL by mixing semiconductor optical amplifier chips with a novel thin film lithium niobate nanophotonic circuit.

According to the author, MLL generates ultra short to 4.8 picosecond light pulses at approximately 1065 nanometers, with a peak power of~0.5 watts - the highest output pulse energy and peak power of any integrated MLL in the nanophotonic platform.

In addition, researchers have shown that the repetition rate of integrated MLL can be tuned in the range of~200 MHz and the coherent characteristics of the laser can be precisely controlled, providing a pathway for a completely stable on-chip nanophoton frequency comb source.

Source: Laser Net



相关推荐
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    查看翻译
  • Shanghai University of Technology publishes the latest Nature paper

    With the increasing demand for human data, the requirements for data storage methods are also increasing. Optical Data Storage (ODS) is a light based storage method commonly used in DVDs, which is low-cost and very durable. But ODS usually stores data in a single layer, and the amount of data that can be stored is limited. Gu Min, academician of Shanghai University of Technology, Wen Jing, and Rua...

    2024-02-26
    查看翻译
  • BAE conducts laser pipeline scanning tests at the shipyard

    BAE Systems Australia has successfully conducted experiments at the Osborne Naval Shipyard and Henderson Shipyard, using laser scanning technology to create 3D models of pipelines that will be installed on the currently under construction Hunter class frigates.A one week trial was conducted at the Zero Line Future factory in southern Adelaide and BAE Systems Australia's Henderson Shipyard, demonst...

    2023-12-13
    查看翻译
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    查看翻译
  • The new method can maintain beam quality while significantly improving the power of fiber lasers

    The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated ne...

    2023-12-22
    查看翻译